
Using XSL, XForms and UBL together to
create complex forms with visual fidelity

Klaas Bals

Abstract

This paper will explain how XSL-FO, XSLT, XForms and UBL can be used together (and how the
implementation in Scriptura XBOS is done). Each technology contributes its own strengts to the
total solution. XSL-FO for page oriented layout with a visual fidelity, XForms for advanced and
flexible forms, and UBL to represent the business data.

Together they allow to create UBL documents such as invoices in a very powerful and flexible way,
all with open standards.

Several challenges are explored. Typically, XSL-FO is used for paginated output, but not for user
interaction, where user actions can change the output. XForms is typically used in combination with
XHTML to create rich web forms.

Also problems encountered when trying to use these technologies together are explained. For example
the way XForms uses CSS to apply dynamics in contrast with the fact that XSL uses XSLT to apply
dynamics. Or the limations that the built-in Dynamic Effects elements in XSL-FO have in relation
with XForms.

In the end, a working prototype implementation will be shown that proves that these three technologies
really can be used together, and that they provide capabilities comparable to Adobe PDF Forms, but
then in an open standard way.

RenderX
1XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=1

Table of Contents
1. eXtensible Stylesheet Language .. 3
2. Universal Business Language (UBL) .. 3
3. XForms .. 6

3.1. Code Example of a CSS file using pseudo-* .. 7
4. Combining XForms and XSL-FO .. 7

4.1. Embedding the XForms model in XSL-FO ... 7
4.2. Embedding XForms Controls in XSL-FO ... 9
4.3. XForms Repeat ... 9
4.4. Rich Text Component ... 10
4.5. XForms Label ... 10

5. XForms aware XSL-FO Formatter ... 11
6. Specify apprearance of XForms controls (and their states) .. 12

6.1. fo:multi-properties ... 13
6.2. fo:multi-switch .. 13
6.3. Extra XSLT stylesheet ... 14

7. Strengths of XForms + XSL ... 15

RenderX
2XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Using XSL, XForms and UBL together to create complex
forms with visual fidelity

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=1

1. eXtensible Stylesheet Language
XSL is composed out of XSLT and XSL-FO. XSLT (with T for Transformations) is the language that is used in XSL
to transform an XML document into an XSL-FO document. This XSL-FO (with FO for formatting objects) document
is then rendered into a final output format on screen, in PDF format, PostScript etc.

XSL-FO is a language to express formatting semantics. XSL-FO is the core of Scriptura XBOS, a product from Inventive
Designers, where it is used to represent page oriented layout throughout the complete process. Apart from XSL-FO,
Scriptura uses a variety of other open standards, such as SOAP Web Services (with WSDL, security, ...), SVG,
OpenOffice Charts, WebDAV, XForms, XSLT, etc...

The XSLT processor takes the XSLT stylesheet and the XML instance as its input. It generates an XSL-FO result tree.
This XSL-FO tree is then transformed into a final output format by an XSL-FO formatter. This figure shows XSLT

and XSL-FO as two distict steps, but of course in the real world they can occur at the same time in a streaming process,
or even by a piece of code that is both an XSLT and XSL-FO processor.

Figure 1. A schematic overview of the XSL process

At time of this writing, XSLT 2.0 is a Candidate Recommendation, and XSL-FO 1.1 is a Last Call Working Draft.

2. Universal Business Language (UBL)
UBL is a set of schema's for XML business documents, such as purchase orders, invoices, order cancellations etc. Ken
Holman has developed XSLT+XSL-FO stylesheets that can render UBL XML instances to XSL-FO and thus PDF
and other formats in the UN Layout. This is using XSL-FO 1.0 and it also shows the power of XSL-FO 1.0 right now.

Currently it can be found at http://www.cranesoftwrights.com/resources/ublss/
[http://www.cranesoftwrights.com/resources/ublss/]

In this paper, UBL will be used as an example of how a purchase order can be represented in an interactive form.

A typical representation of a purchase order has multiple pages. The first page typically has a big header containing
the address information. The last page has a big footer containing the delivery terms, and all the pages in between have
a small header and small footer. If there is only one page, it has a big header and a big footer.

Also, the visual representation contains a page number, and a reference to the page with the delivery terms.

XSL is the perfect language to satisfy these constraints, and to define a stylesheet to transform the UBL instance into
a visual representation of the purchase order.

RenderX
3XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Using XSL, XForms and UBL together to create complex
forms with visual fidelity

Re-format page sizes

http://www.cranesoftwrights.com/resources/ublss/
http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=1

An example of a visual representation of a UBL purchase order generated using XSLT and XSL-FO (with Scriptura
XBOS). [Page 1]

Figure 2. UBL Representation page 1

RenderX
4XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Using XSL, XForms and UBL together to create complex
forms with visual fidelity

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=1

An example of a visual representation of a UBL purchase order generated using XSLT and XSL-FO (with Scriptura
XBOS). [Page 2]

Figure 3. UBL Representation page 2

RenderX
5XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Using XSL, XForms and UBL together to create complex
forms with visual fidelity

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=1

An example of a visual representation of a UBL purchase order generated using XSLT and XSL-FO (with Scriptura
XBOS). [Page 3]

Figure 4. UBL Representation page 3

3. XForms
XForms is a representation of a form in an XML environment. XForms is not a language on itself, it needs a host lan-
guage, such as XHTML, SVG or XSL-FO. Up to this point, most usages of XHTML are combined with XHTML, and
it will even become an integrated part of XHTML 2.0.

RenderX
6XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Using XSL, XForms and UBL together to create complex
forms with visual fidelity

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=1

XForms has a very clean design to represent the form in separate components. It separates the model, the instance data
and the user interface. XForms provides the model and the instance data, and the host language must take care of the
user interface. It has support for strong typing, resulting in fast client side validation.

At the time of this writing, XForms 1.1 is a Working Draft.

The XForms processor maintains a data-model consisting of values and states (e.g. validity and relevance). It also
maintains the state and processing of the XForms UI, e.g. repeats, cases and any bound element. XHTML embeds the
XForms model and UI in its content which results in a semantic representation of a page with one or more forms. The
CSS engine will then layout and display the semantic XHTML+XForms page. The XForms UI will expose its states
as pseudo-classes to allow the CSS engine to style the XForms controls accordingly to their states. The XForms UI

will also expose a set of pseudo-elements which enables the CSS engine to layout the concrete rendering of the XForms
controls.

Figure 5. A schematic overview of the XForms process in combination with XHTML and
CSS

To allow for the dynamically changing states of the controls (valid/invalid/required etc), a set of pseudo-classes and
pseudo-elements were added as extensions to CSS by the XForms working group.

3.1. Code Example of a CSS file using pseudo-*

/* Display a red background on all invalid form controls */
*:invalid { background-color:red; }

/* Display a red asterisk after all required form controls */
:required::after { content: ""; color:red; }

/* Do not render non-relevant form controls */
*:disabled { visibility: hidden; }

4. Combining XForms and XSL-FO
The XSL-FO instance also needs to contain XForms elements. Several XForms elements are embedded using a different
approach.

4.1. Embedding the XForms model in XSL-FO
The XForms xforms:model element is embedded in the XSL-FO fo:declarations element.

RenderX
7XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Using XSL, XForms and UBL together to create complex
forms with visual fidelity

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=1

This is an example of how the XForms model is embedded in the XSL-FO fo:declarations element. Please note
that this is an generated example and that's why some identifiers are not very human-friendly.

<fo:declarations>
 <xforms:model id="Rm9ybTogRm9ybQ____">
 <xforms:instance id="instance">
 <!-- here is the UBL instance -->
 </xforms:instance>
 <xforms:bind type="xs:base64Binary" required="false()" relevant="true()"

 readonly="false()" nodeset="DeliveryTerms"
 id="2319213325121437696" constraint="true()"/>
 <xforms:bind type="xs:unsignedLong" required="true()" relevant="true()"
 readonly="false()" nodeset="BuyersID" id="755313862053666816"

 constraint="true()"/>
 <xforms:bind nodeset="OrderLine" id="__query_T3JkZXJMaW5l__">
 <xforms:bind type="xs:decimal" required="false()" relevant="true()"
 readonly="true()" nodeset="FormInput1"
 id="__query_T3JkZXJMaW5l___706076128828153856"
 constraint="true()"
 calculate="count(../preceding-sibling::OrderLine)+1"/>
 <xforms:bind type="xs:string" required="false()" relevant="true()"
 readonly="false()" nodeset="ItemSellersItemIdentificationID"

 id="__query_T3JkZXJMaW5l___889669368973639680"
 constraint="true()"/>
 <xforms:bind type="xs:string" required="false()" relevant="true()"
 readonly="false()" nodeset="ItemDescription"
 id="__query_T3JkZXJMaW5l___3789927607584666624"
 constraint="true()"/>
 <xforms:bind type="xs:string" required="false()" relevant="true()"
 readonly="false()" nodeset="ItemQuantity"
 id="__query_T3JkZXJMaW5l___5055423852316362752"
 constraint="true()"/>
 <xforms:bind type="xs:string" required="false()" relevant="true()"
 readonly="false()" nodeset="ItemBasePricePriceAmount"
 id="__query_T3JkZXJMaW5l___3368271152911538176"
 constraint="true()"/>
 <xforms:bind type="xs:string" required="false()" relevant="true()"
 readonly="true()" nodeset="LineExtensionAmount"
 id="__query_T3JkZXJMaW5l___7884086665032749056"
 constraint="true()"
 calculate="../ItemQuantity * ../ItemBasePricePriceAmount"/>

 </xforms:bind>
 <xforms:bind type="xs:string" required="false()" relevant="true()"
 readonly="true()" nodeset="LineExtensionTotalAmount"
 id="5527481283448094720" constraint="true()"
 calculate="sum(../OrderLine/LineExtensionAmount)"/>
 <xforms:submission replace="none" method="" id="4081033177616557056"
 action=""/>

RenderX
8XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Using XSL, XForms and UBL together to create complex
forms with visual fidelity

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=1

 </xforms:model>
</fo:declarations>

4.2. Embedding XForms Controls in XSL-FO
The XForms Controls elements, such as input, are embedded in the XSL-FO instance using the fo:instream-
foreign-object element. XSL-FO attributes are used on the XForms elements to specify the layout of the controls.

This is an example of how an xforms:input control is embedded:

<fo:block-container fo:width="135.6pt" fo:top="50.85pt" fo:left="118.65pt"
 fo:block-progression-dimension.minimum="16.95pt"
 fo:absolute-position="fixed">
 <fo:block>
 <fo:instream-foreign-object fo:content-width="135.6pt"
 fo:content-height="16.95pt">
 <xforms:input st:stylingClass="C755313862053666816" fo:font-size="12.0pt"

 fo:font-family="Arial" fo:color="#000000"
 bind="755313862053666816">
 <xforms:label>BuyersID</xforms:label>
 </xforms:input>
 </fo:instream-foreign-object>
 </fo:block>
</fo:block-container>

4.3. XForms Repeat
The XForms Repeat constructs are allowed anywhere in the XSL-FO document, as in shown in this example:

<fo:table fo:table-layout="fixed">
 <fo:table-column fo:column-width="45.2pt"/>
 <fo:table-header fo:font-style="italic" fo:font-size="12.0pt"
 fo:font-family="Verdana">
 <fo:table-row>
 <fo:table-cell fo:text-align="center" fo:border-width="1.0pt"
 fo:border-style="solid">
 <fo:block fo:line-height="normal">Line Num</fo:block>
 </fo:table-cell>
 </fo:table-row>
 </fo:table-header>
 <fo:table-body>
 <xforms:repeat id="__query_T3JkZXJMaW5l___REPEAT"
 bind="__query_T3JkZXJMaW5l__">
 <fo:table-row>
 <fo:table-cell fo:border-width="1.0pt" fo:border-style="solid">
 <fo:block fo:start-indent="0pt" fo:end-indent="0pt">
 <fo:instream-foreign-object fo:content-width="44.2pt"
 fo:content-height="32.9pt">
 <xforms:input fo:font-size="12.0pt"
 fo:font-family="Times New Roman"

RenderX
9XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Using XSL, XForms and UBL together to create complex
forms with visual fidelity

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=1

 bind="__query_T3JkZXJMaW5l___706076128828153856">

 <xforms:label>FormInput1</xforms:label>
 </xforms:input>
 </fo:instream-foreign-object>
 </fo:block>
 </fo:table-cell>
 </fo:table-row>
 </xforms:repeat>
 <fo:table-body>
<fo:table>

4.4. Rich Text Component
To be able to allow form-users to add content to the document, including formatted content with bold, italics, etc,
support for a 'Rich Text Component' was added. An xforms:upload element is used to add the content of the Rich
Text Field, which will be an XSL-FO fragment, to the instance. This means that the instance will contain XSL-FO
elements and attributes.

<fo:block>
 <fo:instream-foreign-object fo:content-width="423.75pt"
 fo:content-height="101.7pt">
 <xforms:upload fo:font-size="12.0pt" fo:font-family="Times New Roman">
 <xforms:label>DeliveryTerms</xforms:label>
 <xforms:mediatype ref="@mediatype"/>
 </xforms:upload>
 </fo:instream-foreign-object>
</fo:block>

4.5. XForms Label
In XForms, the xforms:label element must be a child of the XForms Control. It is also necessary that the label is
displayed so that it is clear that it is related to the XForms control. This is done for reasons of accessiblity.

In XSL-FO, you want to have the possibility to have the label appear anywhere you want, for example in a different
column of a table. This means that it is not possible to embed the xforms:label in the control, without doing
something different.

Inventive Designer proposed to the XForms Working Group to have the possibility to have the xforms:label element
appear ourside of the control, and just makes a reference to the control (or the other way around with a reference from
the control to the label). This suggestion did not get enough support. This is an example of what was suggested:

<fo:table>
 <fo:table-row>
 <fo:table-cell>
 <xforms:label idref="mylabel"/>
 </fo:table-cell>
 <fo:table-cell>
 <fo:block>
 <fo:instream-foreign-object>
 <xforms:input bind="__query_T3JkZXJMaW5l___706076128828153856">
 <xforms:label id="mylabel">My Label</xforms:label>

RenderX
10XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Using XSL, XForms and UBL together to create complex
forms with visual fidelity

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=1

 </xforms:input>
 </fo:instream-foreign-object>
 </fo:block>
 </for:table-cell>
 </fo:table-row>
</fo:table>

For that reason, it is probably best to use an extension. Another alternative is to just repeat the label contents outside
of the control (without any semantic link with the control), and set the fo:visibility attribute to false on the label in the
control, as was done in the example:

<fo:table>
 <fo:table-row>
 <fo:table-cell>
 <fo:block>My Label:</fo:block>
 </fo:table-cell>
 <fo:table-cell>
 <fo:block>
 <fo:instream-foreign-object>
 <xforms:input bind="__query_T3JkZXJMaW5l___706076128828153856">
 <xforms:label fo:visibility="false">My Label</xforms:label>
 </xforms:input>
 </fo:instream-foreign-object>
 </fo:block>
 </for:table-cell>
 </fo:table-row>
</fo:table>

5. XForms aware XSL-FO Formatter
Generating the final output format from XSL-FO is a unidirectional process. After the output has been generated, no
interaction is possible (apart from a couple of interactive features that XSL-FO supports). To be able to combine
XForms and XSL-FO, the XSL-FO formatter needs to be adapted so that it can cope with the changes that are happening
in the document.

When using XSL-FO as a host language, the XSL-FO document contains XForms elements. The way we implemented
this, the XSL-FO instance (that now contains XForms) is still generated using an XSLT stylesheet. This means that
the form can be dynamically built, for example the purchase order can have a list of products the form-user can select,
and these can be extracted from a product catalog when the form is generated. This is shown in this figure.

RenderX
11XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Using XSL, XForms and UBL together to create complex
forms with visual fidelity

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=1

The XSL-FO+XForms document is still generated using an XSLT stylesheet.

Figure 6. A schematic overview of the XForms process in combination with XSL

The XForms aware formatter will show the controls and allow interaction with them. When values are changed, the
forms XML instance is updated (and the XML source tree is not updated), and also the screen must be updated to show
the change!

If we forget the generation of the XSL-FO+XForms document for now, and focus on the XForms aware XSL-FO
Formatter, we will get this figure.

The details of the XForms-aware XSL-FO formatter.

Figure 7. A schematic overview of the XForms-aware XSL-FO Formatter

6. Specify apprearance of XForms controls (and their
states)
We the values are updated, its model item properties (required, valid/invalid, relevat) might be updated. This means
the XSL-FO Formatter must also show this updated state. This means we need to find a way to express how the controls
should look depending on the model item properties. (Thus we need to find an alternative for the CSS pseudo-classes
and -elements.) There are different approaches to fullfil this requirement. The example that will be shown illustrates
the typical requirement of making the background of a control red when the value is invalid, and making it yellow
when the control must be filled in.

There are three alternatives that I will discuss

RenderX
12XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Using XSL, XForms and UBL together to create complex
forms with visual fidelity

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=1

6.1. fo:multi-properties
XSL-FO has a concept called fo:multi-properties, that are intended to provide user interaction on (screen-
)output. The element fo:multi-properties has an attribute called 'active-state' that can have values 'visited',
'hover', 'focus', etc and depending on the state of the object, the properties related to that state are used on that object.

To be able to use this in the XForms context, new values would need to be introduced, for example 'active-state', 'valid',
'invalid', 'relevant', etc or perhaps better 'xfx:active-state', 'xfx:valid', ...

The good thing about this approach is that it is a know XSL-FO concept, and very nicely integrated into XSL-FO.

But there are also downsides to this approach. One of the problems is the visibility to hide shapes when a control (or
the XML element in the XML forms instance) becomes non-relevant. The visibility property in XSL-FO can not
completely hide an object. If it is hidden, it still takes up space in the output, and that is not what you want of a non-
relevant control. (The reason that XSL-FO is not really removing the object is that it just wasn't necessary, because if
you didn't want an object to appear, you just don't produce the elements in XSLT. XSL-FO assumed hiding would
happen by XSLT process by just removing the objects from the tree.)

Another downside of this approach is that it is bot possible to change appearance of objects depending on contents,
for example make the text red if the entered amount is negative. This feature is not supported with the CSS pseudo-
classes and -elements either, but it would be nice to have support for it.

This is an example of how fo:multi-properties would look when combined with XForms:

<fo:multi-properties text-decoration="underline">
 <fo:multi-property-set active-state=“xfx:required"
 background-color=“yellow"/>
 <fo:multi-property-set active-state=“xfx:invalid"
 background-color="red"/>
 <xforms:input fo:background-color="merge-property-values()"
 bind=“bind-name">
 <xforms:label>Buyers ID</xforms:label>
 </xforms:input>
</fo:multi-properties>

6.2. fo:multi-switch
XSL-FO has a concept of switching the appearance of certain blocks. An fo:multi-switch always shows exactly
one of its fo:multi-case children, and a user/reader can change the case that's displayed by clicking an fo:multi-
toggle.

To use this in an XForms context, you would need to add a property to every fo:multi-case to indicate when this
case must be displayed. For example you can add a new property 'xfx:active' with values 'valid', 'invalid', 'relevant', ...

Using this approach, (just as with the fo:multi-properties) it is also not possible to change appearance of objects de-
pending on contents.

Another limitation is that you can not combine cases, so expressing that the control must have a red border when it is
invalid and a yellow background when it is required will never show these two appearances at the same time, while
this is actually required. This could be solved by allowing multiple values for the xfx:active property, but still it is not
very convenient.

The advantage of this approach is that is is more powerful than fo:multi-properties (is can hide objects when non-rel-
evant), and it is also very nicely integrated in XSL-FO

RenderX
13XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Using XSL, XForms and UBL together to create complex
forms with visual fidelity

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=1

6.3. Extra XSLT stylesheet
The last alternative of changing the appearance of controls depending on their states uses an extra XSLT stylesheet.
The extra XSLT stylesheet assumes that the XForms processor that is a part of the XForms-aware XSL-FO Formatter
adds extra information to those controls about their state, such that the Formatter can render them with the appropriate
appearance.

For example, if the XForms processor find that a control is non-relevant, it can add an attribute or element to the control
in a separate namespace. In the XForms solution implemented in Scriptura, the open source Chiba processor is used,
and thus elements and properties in the chiba namespace are added. This is an example of a control that is invalid:

<xforms:input bind="xyz">
 <xforms:label>My Label</xforms:label>
 <chiba:data chiba:valid="false"/>
</xforms:input>

This means that the XSLT stylesheet should match those elements. This is a fragment of such a stylesheet:

<xsl:template match="xforms:input[chiba:data/@chiba:valid = ‘false']">
 <xforms:input fo:background-color=“red” bind=“{@bind}”>
 <xsl:apply-templates/>
 </xforms:input>
</xsl:template>

<xsl:template match="xforms:input[chiba:data/@chiba:required = 'true']">
 <xforms:input fo:background-color=“yellow” bind=“{@bind}”>
 <xsl:apply-templates/>
 </xforms:input>
</xsl:template>

This figure shows the detailed operation of the XForms-aware XSL-FO Formatter including the extra XSLT stylesheet.

The details of the XForms-aware XSL-FO formatter including the XSLT Stylesheet.

Figure 8. A schematic overview of the XForms-aware XSL-FO Formatter in detail

RenderX
14XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Using XSL, XForms and UBL together to create complex
forms with visual fidelity

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=1

The major advantage of this approach is that it is very flexible. Any type of condition can be evaluated to determine
the appearance of controls, and even conditions that use the controls values can be done, for example to make the text
red in the amount is negative. It is also possible to have alternating row colors in a dynamic table for example.

Of course this approach also has a downside. Apart from being a new concept, which means it is not very nicely integrated
in XSL-FO, there also is a performance penalty to executing this stylesheet. And as this stylesheet has to be executed
every time a control's value changes, the user may notice the delay for big forms.

7. Strengths of XForms + XSL
The major advantage of using XForms and XSL-FO together is that you can create forms with visual fidelity. This
feature is very important for legal and business reasons and is a funcamental step in using electronic forms.

The advantages of XForms are still valid: Strong typing, repeated structures, XML data model, client side validation,
etc.

When this is combined with other features, you can dynamically update barcodes and even charts (pie charts, bar charts,
etc). Also rich text area's enable people to add content even with italics, underline etc.

It has all of the advantages of PDF Forms, but then really using open standards, were PDF Forms are actually only
using XML and don't use open standards for the form or layout specification.

RenderX
15XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Using XSL, XForms and UBL together to create complex
forms with visual fidelity

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=1

Biography
Klaas Bals

CTO
Inventive Designers [http://www.inventivedesigners.com]
Sint-Bernardsesteenweg 552
Antwerp
2660
Belgium

Klaas Bals is Chief Technology Officer of Inventive Designers [http://www.inventivedesigners.com] where he is
responsible for Scriptura XBOS, a document design, generation, delivery and forms solution using XSL-FO and
XForms, including the WYSIWYG designer.

He studied Computer Science at the University of Antwerp, Belgium. He is a member of the XSL working group
at the W3C. He can be reached at the following email address: 'Klaas_Bals (at) inventivedesigners.com'.

RenderX
16XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Using XSL, XForms and UBL together to create complex
forms with visual fidelity

Re-format page sizes

http://www.inventivedesigners.com
http://www.inventivedesigners.com
http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=1

	1. eXtensible Stylesheet Language
	2. Universal Business Language (UBL)
	3. XForms
	3.1. Code Example of a CSS file using pseudo-*

	4. Combining XForms and XSL-FO
	4.1. Embedding the XForms model in XSL-FO
	4.2. Embedding XForms Controls in XSL-FO
	4.3. XForms Repeat
	4.4. Rich Text Component
	4.5. XForms Label

	5. XForms aware XSL-FO Formatter
	6. Specify apprearance of XForms controls (and their states)
	6.1. fo:multi-properties
	6.2. fo:multi-switch
	6.3. Extra XSLT stylesheet

	7. Strengths of XForms + XSL

