Re-format page sizes

System Architecture for XML Offload to a
Cedll Processor-Based Wor kstation

Stefan Letz
Roland Seiffert
Jan van Lunteren

Paul Herrmann

Abstract

This paper describes the design, prototype implementation, and evaluation of a system architecture
for XML offload to a Cell processor-based workstation. This architecture includes a high-performance
parser based on a novel enhanced finite state machine technology.

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 1
RenderX

formatter


http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=126

Re-format page sizes

RenderX

formatter

System Architecture for XML Offload to a Cell
Processor-Based Workstation

Table of Contents

IO [ (0 To [0 Tox 1T o PP 3
2, Gl OV I B vt e e 3
2.1, Cell ProCesSOr ATCIITECIUIE ....iv ittt ettt et e e e e e e e e e e aaeaaes 3
2.2. Cell Processor-Based WOTKSTAtION ..........ouuiiiiiii e eans 3
1Y IO 5 [ Lo PP 4
TR O 01=T o] £ PO UPPTPPIN 4
3.2, EXISEING SOIULIONS ...ttt ettt et e e e e e 4
4. SYSEEM INFTASTIUCTUIE ... ittt e ettt ettt e e et e et e e e s 5
4.1, DESIGN ODJECLIVES ... ettt ettt ettt et ettt 5
4.2. Prototype IMPIEmMENTALION .......coouuiiiiii et 5
4.3, Performance EVAUALION .........ouiiii et 6
D Y I N ol ] T (o] PP 6
5.1. ENhanced FSM TECANOIOQY ... .cevvtneiiiiiieiiii ettt 6
5.2. B-FSM-based XML ACCEIEIAtION ... ..iviitii e e e e e 8
5.3, Performance EVAIUALION ...........iiviiriiii e e e 9
6. CoNCIUSIONS AN OULIOOK ....oviieitiiit e e e e e e e e e e e e e e e e e e e et e e e aaeanes 10
T (o (=T g U N [0 ot PSP 10
ACKNOWIEAGEMENTS ...ttt et ettt ettt e e e aaans 10
BB IIOGIAPNY ..t e 11
XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 2


http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=126

Re-format page sizes

RenderX

formatter

System Architecture for XML Offload to a Cell
Processor-Based Workstation

1. Introduction

Cell is a new processor architecture jointly developed by Sony, Toshiba, and IBM. The architecture's first processor
combines one Power Architecture™ and eight Single Instruction Multiple Data cores, the so-called Synergistic Pro-
cessing Elements, in a “supercomputer on a chip”. Besides its intended use in next-generation game consoles, high-
definition television sets, and Cell processor-based workstations, the processor is also interesting for other application
scenarios. One promising idea is to exploit Cell for function offload, where computationally-intensive processing tasks
are moved from application systems to specialized offload systems, enabling existing applications to benefit from the
computing power of Cell.

An especially pressing subject in today's application environments is the acceleration of XML processing. XML has
emerged as the de facto standard for exchanging and handling data and information, but its processing is still plagued
by a tremendous lack of performance. In particular, parsing, the very basic step of XML processing, considerably in-
creases the load on application systems that are already operating at their limits [1].

This paper describes the design, prototype implementation, and evaluation of a system architecture for XML offload
to a Cell processor-based workstation, bringing together a novel powerful processor technology and an increasingly
important software technology that suffers from its performance problem [2].

2. Cell Overview

The Cell processor is the result of a joint development project of Sony, Toshiba, and IBM. In 2001, the three formed
the so-called STI Design Center in Austin, Texas, whose task was to create a new powerful processor architecture.

2.1. Cell Processor Architecture

The first processor of the Cell architecture is a multi-core design, comprising nine cores [3]. The chip's main unit is a
64 hit Power Architecture™ core, called Power Processor Element (PPE). The PPE has an in-order pipeline consisting
of eleven stages, provides Simultaneous Multi-Threading (SMT), and has a Vector Multimedia Extension (VMX) unit.
The PPE's purpose is to run the operating systems and orchestrate the other units.

These other units are eight Single Instruction Multiple Data (SIMD) cores, so-called Synergistic Processor Elements
(SPEs). Compared with the PPE, they are relatively simple, but allow fast fixed-point and floating-point operations
on multiple data sets simultaneously. Each SPE has a 256 KB memory, the so-called Local Store (LS), which can be
used freely by code running on the SPE and holds both program code and data.

All nine cores are connected via the Element Interface Bus (EIB), a high-bandwidth data ring that allows very fast
communication between the units and supports over 100 outstanding Direct Memory Access (DMA) requests, which
transfer data between the Local Stores and system memory. This powerful bus gives the architecture its second name:
Broadband Processor Architecture. Furthermore, the external FlexlO bus allows multiple Cell chips to be connected.

With its design, the chip is especially well suited for applications such as high-performance computing, graphics and
visualization, multimedia processing, and digital entertainment. But besides these obvious uses, others may be interesting
as well.

2.2. Cell Processor-Based Wor kstation

As has been publicly announced, IBM is building a workstation based on the Cell processor. The exact form and system
features have not yet been made public. The prototype of this workstation is an IBM BladeCenter® server.

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 3


http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=126

Re-format page sizes

RenderX

formatter

System Architecture for XML Offload to a Cell
Processor-Based Workstation

3. XML Offload

The basic idea of XML offload is to move typically computationally-intensive XML processing tasks from systems
that run the applications to other designated systems. Possible motivations for doing so are the following:

1. Reducing the workload of the application systems, i.e., freeing potentially expensive resources such as CPU
cycles, memory, or disk space.

2. Accelerating processing.
3. Providing specialized services that otherwise would not be possible.

4. Providing centralized services on the offload systems, possibly using approaches such as load balancing or ac-
counting.

Most existing offload solutions originate from motivations 1 and 2, e.g., hardware systems such as XML accelerator
PCI cards. The work presented here is also driven by these two motivations, but is characterized by sufficient flexibility
to consider also points 3 and 4 above.

3.1. Concepts

One can basically distinguish two concepts used in offload solutions: the client-server concept and the proxy concept.

The main idea of the client-server concept is to have a server provide services that are requested by a multitude of clients.
When viewed from a client-centric perspective, or when a server serves only one client, this concept can also be inter-
preted as the server functioning as a co-processor for the client. A client-server infrastructure basically consists of four
components:

» At least one client, i.e., an application system that offloads processing tasks.
» One or more servers, i.e., designated systems that process these tasks.

« One or more services provided by the servers.

» A communication protocol between clients and servers.

In contrast to extending a system architecture by introducing a server system and explicitly offloading processing tasks
to this system, the proxy concept adds a proxy system between existing communication steps. A proxy infrastructure
can be divided into the following components:

« One or more clients, i.e., application systems.
» One or more proxies, which implicitly handle processing tasks on the in- or outbound communication of the clients.
* A communication protocol between clients and proxies.

« A communication protocol between proxies and external systems.

3.2. Existing Solutions

There are numerous existing solutions for XML offload. For example, the Tarari RAX Content Processor (RAX-CP)
is a hardware solution for XPath-based processing of XML data, having the form of a standard PCI card and functioning
as an XML co-processor [4]. The underlying technique, called “Simultaneous XPath”, allows evaluation of given XML
data using multiple XPath expressions. Tarari promises large performance improvements over software-only processing

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 4


http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=126

Re-format page sizes

RenderX

formatter

System Architecture for XML Offload to a Cell
Processor-Based Workstation

approaches. Actually, the programmable logic of Tarari's PCI card allows solutions for handling tasks other than XML
processing.

Two XML acceleration appliances come from DataPower and are called XA35 XML Accelerator™ and XS40 XML
Security Gateway ™. Whereas the XA35 handles XSLT transformations, the X540 provides Web Services Security
(WS-Security) support. Both appliances are network-attached hardware accelerators and can operate in co-processor
or proxy mode. DataPower claims to deliver “wire-speed” functionality.

4. System Infrastructure

The system architecture presented in this paper consists of two elements: a basic infrastructure and a number of spe-
cialized offload services integrated therein. The system infrastructure provides means to move processing tasks from
application systems to designated offload systems. Following the general considerations of Section 3.1, its design and
implementation are divided into three components: a client, a server, and a communication interface. This section de-
scribes the prototype implementation of the system infrastructure.

4.1. Design Objectives

In contrast to the examples of offload solutions presented in Section 3.2, this work exploits a general-purpose processor
architecture instead of special-purpose hardware or programmable logic. The focus is not on high-level XML standards,
but on XML parsing as the basic step of XML processing. Furthermore, special attention is paid to providing a more
general system infrastructure for offload that is not limited to parsing.

The most important design objectives are as follows:

» Transparent integration and portability. The client should transparently integrate into existing application program-
ming interfaces. Furthermore, it should be implemented in a portable fashion.

* Flexibility. The server should be able to provide various offload services besides XML parsers. The communication
interface should be independent from the services that use it.

» Efficiency and performance. The overhead introduced by the infrastructure should be as small as possible. Further-
more, the server’s underlying hardware should be used optimally in order to provide maximum processing perform-
ance. The communication interface should allow an efficient, low-latency implementation on both client and
server. It should enable the server to mimic the behavior of local functionality on the application systems. When
parsing XML, a local SAX parser returns the first SAX event as soon as it has parsed enough input data. Thus, the
server should be able to send the first parsing results to the client as soon as possible.

4.2. Prototype mplementation

To achieve these design objectives, the client is implemented in Java™ and integrates into the Java™ API for XML
Processing (JAXP). If an offload server is available, the client uses an XML parser service on the server. Otherwise,
the client uses a local parser.

The server is implemented in C++ on the Linux™ operating system. It supports multiple services at the same time
that can provide functionality other than XML parsing. A specific service is identified by a unique hierarchical name.
Each instance of a service provides a number of properties, which can be set and retrieved by the client. The prototype
implementation of the server contains SAX and DOM parser services based on Expat, Xerces-C++, and the XML ac-
celerator described below.

The so-called event-based communication interface provides asynchronous, parallel communication by implementing
streaming. The client streams input data to the server, and the server streams the processing results back to the client.

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 5


http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=126

Re-format page sizes

RenderX

formatter

System Architecture for XML Offload to a Cell
Processor-Based Workstation

The communication interface defines some common communication primitives and allows services to add specific
ones.

4.3. Perfor mance Evaluation

The performance evaluation of the infrastructure reveals an unexpected bottleneck in existing Java™ parser interfaces.
These interfaces require an inefficient mapping of the communication interface to their structures, so that parsing using
a parser service takes about as long as parsing using a local parser, e.g., Xerces-J, does and causes approximately the
same amount of CPU load. Figure 1 compares the performance of SAX parsing using the Xerces-C++ parser service
and using a local Xerces-J parser, where the parser instances are reused to process each XML file 50 times.

7 Wad
Local parse//
[
%rser BEMVICE
c //

3 7
|4

0 2000 4000 5000 8000 10000 12000
filesize (kB)

time (s)
R

Figure 1. SAX Performance Evaluation

The main causes of this bottleneck are inherent restrictions of the Java™ programming language, such as the absence
of C++-style pointers and memory operations. A potential solution to this problem could be the integration of the offload
infrastructure through the Java™ Native Interface (INI). Another approach could be the modification of the Java™
Runtime Environment (JRE) to provide highly efficient data types for the interfaces needed. However, at the time of
writing, we have not yet obtained conclusive results, so that further work is necessary.

5. XML Accelerator

This section describes the main implementation concepts of the accelerator parser service that is executed on the Cell
processor, which exploits a novel technology called BaRT-based Finite State Machine (B-FSM).

5.1. Enhanced FSM Technology

A key aspect of the B-FSM technology is that it is based on state transition rules that include conditions for the current
state and input values, and have been assigned priorities. In each cycle, the highest-priority transition rule is determined
that matches the actual values of the state and input. This rule is then used to update the current state and to generate
output. This concept will now be explained using the example of a state transition diagram, shown in Figure 2, that
detects the first occurrence of one of the two patterns “121h” and “ABh” in hexadecimal notation. The state transition
diagram can be described using the set of transition rules given in Table 1.

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 6


http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=126

Re-format page sizes

RenderX

formatter

System Architecture for XML Offload to a Cell
Processor-Based Workstation

02.98.F

Figure 2. Sample State Transition Diagram

rule current state input - next state priority
Ry * * - So 0
Ry * 1h - Sq 1
R, Sy 2h . S, 1
R; S, 1h - S3 2
R4 * Ah - S4 1
Rs Sa Bh R Ss 1

Table 1. Transition Rules

Transition rule R, specifies that if the current state equals S; and the input equals ‘2h’, a transition will be made to
state S,. Transition rules Ry and R5 specify that with an input symbol “1h’, a transition will be made to state S; if the
current state equals S, and that a transition will be made to state S; if the current state is any state other than S,. This
is achieved by including a wildcard condition for the current state (represented by a symbol “**) in rule R; and by as-
signing a higher priority to rule R5 than to rule R;. Transition rule Ry, involving wildcard conditions for both the state
and the input and having a minimum priority, can be regarded as a default rule that is only selected if no other matching
rule can be found. These six transition rules describe the entire state transition diagram, as can be verified in Figure 2.

The B-FSM concept applies a hash-based search algorithm, called BaRT (Balanced Routing Table search), to find the
highest-priority transition rule matching the state and input values. By exploiting BaRT in combination with several
optimization techniques, including state clustering and encoding, the B-FSM technology is able to provide a unique
combination of high performance, low storage requirements, and fast dynamic updates, while supporting very large
state transition diagrams and wide input and output vectors, resulting in a significant gain over conventional program-
mable state machine technologies. The strength of the B-FSM technology is clearly illustrated by the design of a pro-
grammable pattern-matching engine that is capable of processing more than 20 Gb of data per second, by matching
the data against thousands of patterns in parallel, while achieving a storage efficiency of about 1,500 patterns or 25,000
characters in only 100 KB of memory [5]. For more details on the BaRT and B-FSM technologies, the reader is referred
to [6].

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 7


http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=126

Re-format page sizes

RenderX

formatter

System Architecture for XML Offload to a Cell
Processor-Based Workstation

5.2. B-FSM-based XML Acceleration

Figure 3 shows a block diagram of the XML accelerator that is based on the B-FSM technology. It consists of two
main components: the B-FSM and an instruction handler.

| B-FSM ¥
| h 4
=tale
register
cuprent mamction
e hand er
. i
transtion o e . — [
rule memory > rule selector P o
&N ST

Figure 3. B-FSM-based XML Accelerator

rest nert respde pent

4 i [ A *

current | imput | e one| et instructions and
state | character state operands

Figure 4. Transition-Rule Vector

The B-FSM operates as a programmable controller, executing programs that are specified using state transition rules
contained in the transition-rule memory shown in Figure 3. Each transition rule is stored as a transition-rule vector,
depicted in Figure 4, which includes a current state and input field that are tested against the actual values of the state
register and input, as well as a conditions field that is used to specify additional conditions to be tested. The next-state
field of the highest-priority matching transition rule that is selected by the rule selector function shown in Figure 3 is
used to update the state register.

The basic concept of the accelerator is illustrated in Figure 5, which shows a simple state transition diagram containing
multiple potential execution paths. The actual path taken through the diagram during program execution is determined
by real-time evaluation of the conditions associated with the transition rules that define the state transition diagram.
The B-FSM will dispatch the instructions and operand values that are contained in the transition rules along the path
selected through the state transition diagram to the instruction handler. In this way, the B-FSM operates as a tightly-
coupled controller, which is capable of evaluating multiple conditions in parallel and, in response, can immediately
trigger the execution of the appropriate instructions.

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 8


http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=126

Re-format page sizes

RenderX

formatter

System Architecture for XML Offload to a Cell
Processor-Based Workstation

nstructions

npul &
[RCHH A i':|_ s
nsincions

Figure5. B-FSM-based Controller

The XML accelerator supports a variety of conditions that can be specified for each transition rule. These conditions
can relate to character information, e.g., allowing direct testing of whether an input character is a legal character to be
used in an XML name, whether it is a white-space character, or whether it is part of a valid hexadecimal string repres-
entation. Conditions can be specified related to the outcome of the instruction execution by the instruction handler,
e.g., to determine whether a string of input characters matches a previous string of input characters that have been
temporarily stored in a local memory (e.g., to check for matching start and end tags). A third category of conditions
relates to the detection and handling of exception and error conditions, e.g., buffer overflows. The instruction handler
supports a wide range of instructions designed for efficient XML processing, including encoding-related instructions
(e.g., conversion from UTF-8 to UTF-16), storage, retrieval and comparison of character strings in a local memory,
searching strings in a search structure, and a flexible generation of output data. Multiple instructions can be combined
in one transition rule, so that they can be executed in parallel by the instruction handler. In addition, a set of special
instructions is directly executed by the B-FSM controller and enables procedure calls to subroutines defined by a col-
lection of transition rules. A detailed discussion of all conditions and instructions supported by the XML accelerator
would exceed the scope of this paper, but will be part of a future publication.

The XML accelerator design, as described above, was initially focused on a hardware implementation that could effi-
ciently exploit the parallelism available between the B-FSM and the various functions within the instruction handler
[6]. However, it appeared that the same concept could be used to create a fast and efficient software implementation
for execution on the Cell processor. This was done by means of a semi-automatic process to generate source code by
efficiently combining controller and instruction-handler functions into single threads, which were then optimized for
the instruction set and execution architecture of the Cell processor.

5.3. Performance Evaluation

Based on the conditions and instructions supported by the XML accelerator, an initial program has been created in the
form of an enhanced state transition diagram specified by transition rules that implements the basic functionality of a
non-validating SAX parser. Figure 6 shows the performance of this program, called SAXy, on different processors
and in comparison to libxml based on various XML files from I1BM DB2® customers.

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 9


http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=126

Re-format page sizes

RenderX

formatter

System Architecture for XML Offload to a Cell
Processor-Based Workstation

- -

SAXy on Intel

SAXy on Cell
{one SPE)

SAXy on Cell
(eight SPE=)

| | | |
0 4000 8000 12000 16000 20000

Parse speed (Bytes per MCycle)

Figure6. XML Accelerator Performance Evaluation

6. Conclusions and Outlook

The prototype implementation of the offload system infrastructure disclosed a bottleneck in existing Java™ parser
interfaces. This problem presents a serious obstacle for various Java'™-based offload and acceleration scenarios, even
beyond XML parsing. But despite its current limitations in the context discussed in this paper, the Java™ environment
remains especially interesting as it is widely used in XML applications.

We were, however, able to demonstrate significant performance gains for XML parsing by exploiting the Cell processor
with a novel approach to parsing technology. In non-Java'™ scenarios, this accelerator can be used to realize high-
performance XML offload and accelerator solutions. A future publication will cover the design and implementation
details of the XML accelerator.

7. Trademark Notices

IBM, Power Architecture, BladeCenter, and DB2 are trademarks of International Business Machines in the United-
States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or
both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.
Tarari is a trademark or registered trademark of Tarari, Inc. or its subsidiaries in the United States and other countries.

DataPower, XA35 XML Accelerator, and XS40 XML Security Gateway are trademarks of DataPower Technology,
Inc.

Other company, product, or service names may be trademarks or service marks of others.

Acknowledgements

We thank Jochen Roth, Matthias Schiitz, Michel Zedler, and Tobias Thierer for their enthusiastic work on XML accel-
eration using Cell technology. We thank Joseph Bostian for providing valuable help and expertise. Special thanks go
to Charlotte Bolliger for her help in preparing this manuscript.

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 10


http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=126

Re-format page sizes

RenderX

formatter

System Architecture for XML Offload to a Cell
Processor-Based Workstation

Bibliography

[1] M. Nicolaand J. John. XML Parsing: A Threat to Database Performance. Proc. of the 12th International Conference
on Information and Knowledge Management (CIKM), pages 175-178, New Orleans, LA, USA, November 2003.

[2] S. Letz. Cell Processor-Based Workstation for XML Offload — System Architecture and Design. University of
Leipzig, Department of Computer Science, Leipzig, Germany, May 2005.

[3] D. Phamet al. The Design and Implementation of a First-Generation CELL Processor. Proc. of the 2005 IEEE
International Solid State Circuits Conference (ISSCC), San Francisco, CA, USA, February 2005.

[4] M. Leventhal. Random Access XML Programming Assisted with XML Hardware. XML Conference 2004, Wash-
ington, DC, USA, November 2004.

[5] J. van Lunteren and A.P.J. Engbersen. A High-Performance Pattern-Matching Engine for Intrusion Detection. Hot
Chips 17, Stanford University, Palo Alto, CA, USA, August 2005.

[6] J. van Lunteren and A.P.J. Engbersen. XML Accelerator Engine. First International Workshop on High Performance
XML Processing, in conjunction with the 13th International World Wide Web Conference (WWW2004), New York,

NY, USA, May 2004.

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 11


http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=126

Re-format page sizes

System Architecture for XML Offload to a Cell
Processor-Based Workstation

Biography

Stefan Letz
IBM Corporation [http://www.ibm.com]
IBM Deutschland Entwicklung GmbH [http://www.ibm.com/de/entwicklung/]
Schoénaicher Strasse 220
Boblingen
71032
Germany
stefan.letz@de.ibm.com

Stefan Letz received his diploma degree in Computer Science from the University of Leipzig, Germany, in June
2005. He has been with the IBM laboratory in Béblingen, Germany, since 2003, working on database backup/restore
solutions. There, he also wrote his diploma thesis entitled "Cell Processor-Based Workstation for XML Offload -
System Architecture and Design".

Roland Seiffert
IBM Corporation [http://www.ibm.com]
IBM Deutschland Entwicklung GmbH [http://www.ibm.com/de/entwicklung/]
Schonaicher Strasse 220
Bdblingen
71032
Germany
seiffert@de.ibm.com

Roland Seiffert received his diploma degree in Computer Science from the University of Stuttgart, Germany, in
1988. He then joined IBM Research to work on natural language technology. In 1995, he moved on to IBM Devel-
opment, working on information retrieval, text mining, and unstructured information management. In 2002/03, he
represented IBM in the W3C workgroup to define an XQuery Fulltext standard. Since 2004, he is the lead architect
for Linux™ on Cell development at the IBM Bdblingen lab.

Jan van Lunteren
IBM Corporation [http://www.ibm.com]
IBM Research GmbH — Zurich Research Laboratory [http://www.zurich.ibm.com/]
Saumerstrasse 4
Ruschlikon
8803
Switzerland
jvl@zurich.ibm.com

Jan van Lunteren received the M.Sc. degree in Electrical Engineering, the M.Sc. degree in Technological Design,
and the Ph.D. degree in Electrical Engineering in 1992, 1994, and 1998, respectively, all from the Technical Uni-
versity of Eindhoven, The Netherlands. He has been with the IBM Zurich Research Laboratory, Riischlikon,
Switzerland, since 1994, doing research on high-speed networking. His current interests include high-performance
memory systems, (deep) packet classification algorithms, and hardware-based XML acceleration.

Paul Herrmann
Universitat Leipzig - Institut fir Informatik [http://www.informatik.uni-leipzig.de/]
Augustusplatz 10-11
Leipzig
04103
Germany
paul@informatik.uni-leipzig.de

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 12
RenderX

formatter


http://www.ibm.com
http://www.ibm.com/de/entwicklung/
http://www.ibm.com
http://www.ibm.com/de/entwicklung/
http://www.ibm.com
http://www.zurich.ibm.com/
http://www.informatik.uni-leipzig.de/
http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=126

Re-format page sizes

System Architecture for XML Offload to a Cell
Processor-Based Workstation

Paul Herrmann received the diploma degree in Physics in 1967 and the Ph.D. degree in Physics in 1973, both from
the University of Leipzig, Germany. Until 1989, he worked at the university's electronic data processing center.
Since then, he is with the Department of Computer Science of the University of Leipzig, focusing on electronic
design automation, client-server architectures, and z/OS (0S/390).

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 13
RenderX

formatter


http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=126

	1. Introduction
	2. Cell Overview
	2.1. Cell Processor Architecture
	2.2. Cell Processor-Based Workstation

	3. XML Offload
	3.1. Concepts
	3.2. Existing Solutions

	4. System Infrastructure
	4.1. Design Objectives
	4.2. Prototype Implementation
	4.3. Performance Evaluation

	5. XML Accelerator
	5.1. Enhanced FSM Technology
	5.2. B-FSM-based XML Acceleration
	5.3. Performance Evaluation

	6. Conclusions and Outlook
	7. Trademark Notices
	Acknowledgements
	Bibliography

