
 Records, Tags and Pipelines
 Serving XML

 Daniel Parker

 Consultant
 Economic Technology, Inc.
 Toronto Ontario Canada

 Daniel Parker lives and works as a freelance
 consultant in Toronto. He has worked for a wide variety of corporate clients, including
 start-ups and large financial institutions. He has been involved in building financial trading
 and risk management systems, telco provisioning products, web applications, and
 enterprise integration tools. He can be reached at
 danielaparker@gmail.com

 XML Pipeline
 Open Source
 Flat File
 XML
 XSLT

Serving XML is a markup language for expressing XML pipelines, and an extendible Java framework
for defining the elements of the language. It provides a markup language for expressing flat-XML, XML-flat, flat-flat, and XML-XML
transformations in pipelines.
This article provides a brief introduction to the vocabulary of this language, and some examples of its flat-XML capabilities.

 Dec 2, 2005
 2005 Daniel Parker.

 Introduction

Serving XML is a markup language for expressing XML pipelines, and an extendible Java framework
for defining the elements of the language. The XML pipeline is a sequence of tasks performed on
a stream of SAX events. The tasks can include XSLT transforms, Schema validation,
custom filtering, and fragment processing. The focus is primarily on content conversion, with special emphasis on adapting legacy data formats to XML, and XML to legacy data formats.

The Serving XML open source project provides an
implementation of this language. It owes a special
debt to Cocoon 1, circa 1999, for the idea of an XML pipeline.
It is also influenced by the XFlat markup language described in ,
and the work by on legacy data conversion.

Serving XML supports reading XML content and
transforming it with XSLT stylesheets and custom SAX
filters.
The source XML can come from XML files or dynamic XML readers,
but it can also come from adaptors of legacy data formats.
It can come from flat files or SQL database records, adapted to XML.
The output XML can be serialized to XML, HTML, or PDF, but
it can also be flattened and written out in legacy data formats.
It can be written to flat files or SQL databases.

Some examples of things that Serving XML can do are as follows:

 Convert flat file records to XML, validating each record with an XML Schema, discarding bad records.

 Convert the results of a SQL query to XML.

 Flatten XML to a record stream, to be written to a flat file or a database.

 Convert flat files from one layout to another.

 Convert database records to flat files and vice versa.

 Transform and validate XML with SAX filters, XSLT stylesheets,
 and schema validation.

 Process a directory of flat files or XML documents.

 Process the fragments of an XML document.

 Serving XML attempts to provide a lightweight solution to these problems
that can be expressed declaratively in a script, and run on the command line or embedded in a Java application.

 XML Pipelines

Michael Kay shows how to implement a SAX pipeline using the Java JAXP API in , Appendix F.
He gives an example of a three-stage pipeline, where XML is streamed first through a pre-processing Java XMLFilter, then an XSLT stylesheet,
and finally a post-processing Java XMLFilter.
In Serving XML, this example can be expressed as

<sx:resources xmlns:sx="http://www.servingxml.com/core">
 <sx:service name="myPipeline">
 <sx:serialize>
 <sx:transform>
 <sx:saxFilter class="PreFilter"/>
 <sx:style>
 <sx:urlSource url="filter.xsl"/>
 </sx:style>
 <sx:saxFilter class="PostFilter"/>
 </sx:transform>
 </sx:serialize>
 </sx:service>
</sx:resources>

 The pipeline can be executed from the command line by entering

java -jar servingxml.jar -r resources.xml myPipeline
 < input.xml > output.xml

 The Serving XML framework needs to load the Java PreFilter and PostFilter classes,
so it must be able to find them in the classpath.
When running Serving XML with the java -jar command, it is enough to place these files in a
 classes sub-directory under the directory containing the servingxml.jar library.

 The Resources Script

A Serving XML resources script looks like this.

<sx:resources xmlns:sx="http://www.servingxml.com/core">

 <sx:include href="other-resources.xml"/>

 <sx:service name="customers">
 <!-- pipeline body -->
 </sx:service>

 <sx:service name="suppliers">
 <!-- pipeline body -->
 </sx:service>

</sx:resources>

 All Serving XML elements that belong to the core vocabulary are in the namespace identified by the URL http://www.servingxml.com/core.
Pipeline bodies are exposed through named service elements. The service elements are assigned QNames, and can be executed by name in a
Serving XML application. An include element allows resource definitions to be pulled in from other resources scripts.

 Conditional Processing

Serving XML supports conditional processing with an sx:choose element,
which tests XPath boolean expressions against parameters to determine which of several alternative
pipeline bodies to execute. Here's an example.

<sx:resources xmlns:sx="http://www.servingxml.com/core">

 <sx:parameter name="validate">
 <sx:defaultValue>no</sx:defaultValue>
 </sx:parameter>

 <sx:service name="customers">
 <sx:choose>
 <sx:when test="$validate='yes'"
 <!-- validating pipeline body -->
 </sx:when>
 <sx:otherwise>
 <!-- non-validating pipeline body -->
 </sx:otherwise>
 </sx:choose>
 </sx:service>

</sx:resources>

 Parameters

The sx:parameter element is used to define a parameter as a QName-value pair,
for instance,

 <sx:parameter name="validate">no</sx:parameter>

A parameter defined inside an element is visible in all sibling and descendent elements, but not in ancestor elements.
If the parameter has the same QName as a parameter in an ancestor,
the new parameter value replaces the old one within the scope of siblings and descendents, but
not in the scope of ancestors, the old value is still visible in ancestor elements. This is to avoid side effects.

The application processing the resources script can pass parameters to the
script. You can pass the parameter validate through the console app by entering

java -jar servingxml.jar -r resources.xml -i input.xml -o output.xml
 customers validate=yes

If you want to define a default value for the parameter, you must do so with
an sx:defaultValue element, like this

 <sx:parameter name="validate"><sx:defaultValue>no</sx:defaultValue></sx:parameter>

Default values can be overriden in a Serving XML application through passed parameters.
More generally, default values in a descendent element
can be overriden by values set in an ancestor.

 A More Interesting Example

Serving XML supports filters that extract document fragments and perform serialization
or other tasks on those fragments. Consider, for example, a file invoices.xml
containing multiple invoice elements.

<inv:invoices xmlns:inv="http://www.telio.be/ns/2002/invoice">
 <inv:invoice id="200302-01" ...

 <inv:invoice id="200302-02" ...
</inv:invoices>

By applying the resources script below, you can produce a separate PDF file for each inv:invoice fragment,
where the output filename is named for the invoice id.

<sx:resources xmlns:sx="http://www.servingxml.com/core"
 xmlns:fop="http://www.servingxml.com/extensions/fop"
 xmlns:inv="http://www.telio.be/ns/2002/invoice">

 <sx:service name="invoices">
 <sx:transform>
 <!-- Here we extract a document fragment from the SAX stream -->
 <sx:processFragmentFilter path="/inv:invoices/inv:invoice">
 <!-- Serialize invoice document fragment to pdf-->
 <sx:serialize>
 <!-- We initialize a parameter with an XPATH expression
 applied to the document fragment -->
 <sx:parameter name="invoice-name" select="@id"/>
 <fop:foEmitter>
 <sx:fileSink file="output/invoice{$invoice-name}.pdf"/>
 </fop:foEmitter>
 <sx:transform>
 <sx:transform ref="steps1-4"/>
 <sx:style><sx:urlSource url="styles/invoice2fo.xsl"/></sx:style>
 </sx:transform>
 </sx:serialize>
 </sx:processFragmentFilter>
 </sx:transform>
 </sx:service>

 <sx:transform name="steps1-4">
 <sx:style><sx:urlSource url="styles/step1.xsl"/></sx:style>
 <sx:style><sx:urlSource url="styles/step2.xsl"/></sx:style>
 <sx:style><sx:urlSource url="styles/step3.xsl"/></sx:style>
 <sx:style><sx:urlSource url="styles/step4.xsl"/></sx:style>
 </sx:transform>

</sx:resources>

Note that the sx:processFragmentFilter instruction extracts each invoice fragment from the document, and begins a new serialization task where the fragment becomes the default content.
In the output directory, expect to find the following files:

invoice200302-01.pdf
invoice200302-02.pdf

 Abstract Elements
 Serving XML supports the idea of abstract elements. New elements can be created as specializations of abstract elements and used interchangeably with core Serving XML elements in resources
scripts. Want your XML serialized to a file on an FTP server? Use the ftpSink:

<sx:resources xmlns:sx="http://www.servingxml.com/core"
 xmlns:edt="http://www.servingxml.com/extensions/edtftp">

 <edt:ftpClient name="myFtpClient"
 host="tor3" user="dap" password="spring"/>

 <sx:service name="myPipeline">

 <sx:serialize>
 <sx:xmlEmitter>
 <edt:ftpSink remoteDir="incoming" remoteFile="output.xml">
 <edt:ftpClient ref="myFtpClient"/>
 </edt:ftpSink>
 </sx:xmlEmitter> ...

 Record Streams

 The Record

Serving XML supports the notion of records that have fields, possibly multi-valued,
and nested subrecords, possibly repeating.

A record can be represented in BNF notation as follows:

Record ::= name (Field+) (Record*) |
 name (Field*) (Record+)

Field:= name (value*)

Here, the name of the record represents the type of the record.

A record has a defined Java interface,

public interface Record {
 RecordType getRecordType();
 String getValueAsString(Name name);
 String[] getValuesAsStrings(Name name);
 Record[] getSegments();
 Record[] getSegments(Name[] path);
 XMLReader createXmlReader();
}

Note the createXmlReader method, which provides an XML view of a record.

 The example below shows the XML representation of an "Employee" type record. This record has three fields, named Employee-No, Employee-Name
and Children.

<Employee>
 <Employee-No>0001</Employee-No>
 <Employee-Name>Matthew</Employee-Name>
 <Children>Joe</Children>
 <Children>Julia</Children>
 <Children>Dave</Children>
</Employee>

Note that Children is a multivalued field.

 Record Content

The sx:recordContent element adapts a stream of records to XML.
It contains a record reader and (optionally) a record mapping.

 <sx:recordContent name="employeeDoc">
 <sx:flatFileReader ...
 <sx:recordMapping ...
 </sx:recordContent>

Record readers read a stream of records from a data source. Examples of data sources include

 A comma separated value (CSV) file

 An EDI file

 The results of a SQL query

 The pathname entries in a directory listing

A record mapping maps records to XML. This section is optional, since there is a default mapping
that emits the canonical XML representation of records. But typically the XML you want
is different from the canonical representation, you may want a field mapped to an attribute rather
than an element, for example, or some field mappings contained in a literal element. Now, in principle, you could do
that by adding an XSLT stylesheet to the pipeline, but XSLT transformations require in-memory trees,
so you wouldn't normally want to do that for a very large flat file. Also, perhaps eighty percent of field mappings can be
expressed with very simple mapping instructions.

 Flat File Reader
 The employees file below has three pipe-delimited fields: Employee-No, Employee-Name, and Children.
The Children field is multi-valued, with subfields delimited by semi-colons. Note that employee Scott has no children.

Employee-No|Employee-Name|Children
0001|Matthew|Joe;Julia;Dave
0003|Scott|

 The file layout is described below.

<sx:flatFile name="employeesFile">
 <sx:flatFileHeader lineCount="1"/>
 <sx:flatFileBody>
 <sx:flatRecordType name="employee">
 <sx:fieldDelimiter value="|"/>
 <sx:delimitedField name="Employee-No"/>
 <sx:delimitedField name="Employee-Name"/>
 <sx:delimitedField name="Children">
 <sx:subfieldDelimiter value=";"/>
 </sx:delimitedField>
 </sx:flatRecordType>
 </sx:flatFileBody>
</sx:flatFile>

The record reader combines a flat file description with a stream source (url, file, file on an FTP server, etc.)
If the stream source is omitted, it defaults to the default stream source, which in the console app
is the file passed with the -i option.

<sx:flatFileReader>
 <sx:flatFile ref="employeesFile"/>
 <sx:urlSource url="data/employees.txt"/>
</sx:flatFileReader>

 Record Mapping
 Suppose you want the output XML to look like this.

<acme:employees xmlns:acme="http://www.AcmeCorporation.com">
 <acme:employee employee-no="0001">
 <acme:name>Matthew</acme:name>
 <acme:children>
 <acme:child>Joe</acme:child>
 <acme:child>Julia</acme:child>
 <acme:child>Dave</acme:child>
 </acme:children>
 </acme:employee>
 <acme:employee employee-no="0003">
 <acme:name>Scott</acme:name>
 </acme:employee>
</acme:employees>

This differs from the canonical XML representation in a number of ways. The Employee-No field, for example, is mapped as an attribute of employee,
and individual sx:child elements are nested in an sx:children element.

The required record mapping is as follows.

<sx:recordMapping name="employeesToXmlMapping"
 xmlns:acme="http://www.AcmeCorporation.com">
 <acme:employees>
 <sx:onRecord>
 <acme:employee>
 <sx:fieldAttributeMap field="Employee-No"
 attribute="employee-no"/>
 <sx:fieldElementMap field="Employee-Name"
 element="acme:name"/>
 <acme:children>
 <sx:fieldElementMap field="Children"
 element="child"/>
 </acme:children>
 </acme:employee>
 </sx:onRecord>
 </acme:employees>
</sx:recordMapping>

This record mapping will largely produce the desired tags, with one exception: it will emit an (unwanted) empty acme:children element for Scott. That
will be fixed up later.

 Finally - Flat to XML

Here is the last stage in the pipeline - the sx:service instruction that transforms and serializes the record content.
The sx:removeEmptyElementFilter does the job of pruning the empty acme:children elements from the output.

<sx:resources xmlns:sx="http://www.servingxml.com/core"
 xmlns:acme="http://www.AcmeCorporation.com">

 <sx:service name="employees">
 <sx:serialize>
 <sx:transform>
 <sx:content ref="employeesDoc"/>
 <sx:removeEmptyElementFilter elements="acme:children"/>
 </sx:transform>
 </sx:serialize>
 </sx:service>

 <sx:recordContent name="employeeDoc"> ...

</sx:resources>

 More Complicated Flat Files

 Variant Record Types
 Many flat files have multiple record types. The trades flat file below has records of two types,
where the type is indicated by a two-character tag field at the front of the record.

TR0001This is a trade record
TN0002X1234A child transaction

This layout can be described as follows.

<sx:flatFileBody>
 <sx:flatRecordTypeChoice>
 <sx:positionalField name="record_type" width="2"/>
 <sx:when test="record_type='TR'">
 <sx:flatRecordType name="trade">
 <sx:positionalField name="record_type" width="2"/>
 <sx:positionalField name="id" width="4"/>
 <sx:positionalField name="description" width="30"/>
 </sx:flatRecordType>
 </sx:when>
 <sx:when test="record_type='TN'">
 <sx:flatRecordType name="transaction">
 <sx:positionalField name="record_type" width="2"/>
 <sx:positionalField name="id" width="4"/>
 <sx:positionalField name="reference" width="5"/>
 <sx:positionalField name="description" width="30"/>
 </sx:flatRecordType>
 </sx:when>
 </sx:flatRecordTypeChoice>
</sx:flatFileBody>

 Here, the fields at the front of the record that go into the record choice
appear immediately below an sx:flatRecordTypeChoice
element. These are followed by a sequence of sx:when
elements that have test attributes containing XPath boolean expressions,
which will be evaluated against the leading fields. An optional sx:otherwise
element can come at the end, for a default.

The first sx:when element whose test expression evaluates as
true determines the record type. If none do, and if there is an sx:otherwise element,
the default record is selected. If there is no sx:otherwise element, the record is skipped.

 Repeating Groups
 Flat files can have repeating groups of fields within a record. Consider the students flat file below.

JANEENGLC-MATHA+1972BLUECHICAGOILATLANTAGA

The file has the following layout.

 name
 4 characters

 subject-grade
 repeating group, repeats twice

 year-born
 4 characters

 favorite-color
 4 characters

 address
 repeating group, repeats twice

It can be described as follows.

<sx:flatFileBody>
 <sx:flatRecordType name="student">
 <sx:positionalField name="name" width="4"/>
 <sx:repeatingGroup count="2">
 <sx:flatRecordType name="subject-grade">
 <sx:positionalField name="subject" width="4"/>
 <sx:positionalField name="grade" width="2"/>
 </sx:flatRecordType>
 </sx:repeatingGroup>
 <sx:positionalField name="year-born" width="4"/>
 <sx:positionalField name="favorite-color" width="4"/>
 <sx:repeatingGroup count="2">
 <sx:flatRecordType name="address">
 <sx:positionalField name="city" width="7"/>
 <sx:positionalField name="state" width="2"/>
 </sx:flatRecordType>
 </sx:repeatingGroup>
 </sx:flatRecordType>
</sx:flatFileBody>

The XML representation of the record will be.

<student>
 <name>JANE</name>
 <subject-grade>
 <subject>ENGL</subject>
 <grade>C-</grade>
 </subject-grade>
 <subject-grade>
 <subject>MATH</subject>
 <grade>A+</grade>
 </subject-grade>
 <year-born>1972</year-born>
 <favorite-color>BLUE</favorite-color>
 <address>
 <city>CHICAGO</city>
 <state>IL</state>
 </address>
 <address>
 <city>ATLANTA</city>
 <state>GA</state>
 </address>
</student>

 More Complicated Record Mappings
 One common request from users is for markup to group records, for emitting tags around groups of records that are related in some way.
While inserting an XSLT transformation into the pipeline is one possibility, this could be a problem for very large input files. Also,
users seem to want something that is closer to the way that reporting tools work, with break logic kicking in on certain events triggered by changes in field values.

 Grouping Records by Field
 The financial plan file below has records for cost and revenue, by project, detail-name, and period.

project,detail-name,period,cost,revenue
1767,AD_Sales_SDT_SVA,2003,150,0
1767,AD_Sales_SDT_SVA,2004,24750,0
1767,OPS_SQA,2004,113,0
1785,AD_Sales_SDT_SVA,2004,7920,0

Now, suppose you want to group the financial information by project and detail-name, like this:

<Plans>
 <Plan project="1767">
 <Details>
 <Detail detailName="AD_Sales_SDT_SVA">
 <PlanData period="2003" cost="150" revenue="0"/>
 <PlanData period="2004" cost="24750" revenue="0"/>
 </Detail>
 <Detail detailName="OPS_SQA">
 <PlanData period="2004" cost="113" revenue="0"/>
 </Detail>
 </Details>
 </Plan>
 <Plan project="1785"> ...

 The sx:groupBy element can be used to
group multiple adjacent records by one or more fields, emitting summary tags around the grouped records.

<sx:recordMapping name="plansMapping">
 <Plans>
 <sx:groupBy fields="project">
 <Plan>
 <sx:fieldAttributeMap field="project" attribute="project"/>
 <Details>
 <sx:groupBy fields="project,detail-name">
 <Detail>
 <sx:fieldAttributeMap field="detail-name" attribute="detailName"/>
 <sx:onRecord>
 <PlanData>
 <sx:fieldAttributeMap field="period" attribute="period"/> ...
 <sx:fieldAttributeMap field="cost" attribute="cost"/> ...
 <sx:fieldAttributeMap field="revenue" attribute="revenue"/> ...

 The sx:groupBy instruction works somewhat analogously to "group by" in SQL,
except that it only applies to adjacent records. It can be nested to any depth.

 Generalizing Grouping
 Some users have requirements for gouping based on the specific value of a field, as opposed to breaks in the value.
Consider, for example, the data below.

BFH01|value01
BCH02|value02
BOH03|value03
...
BOT94|value07
BOH03|value08
...
BOT94|value15

BCT95|value16
BFT99|value17

Here, the BFH01 record type indicates the beginning of a group of level 1,
the BFT99 indicates the end. The BCH02 indicates
the beginning of a group of level 2, the BCT95 indicates the end.
The BOH03 indicates the beginning of a group of level 3, the
 BOT94 indicates the end.

Two record mapping elements have been introduced to address these cases:

 sx:innerGroup

 sx:outerGroup

These elements contain an sx:startGroup, then (optionally) an sx:endGroup, then record mapping elements.
The sx:startGroup and sx:endGroup elements define the beginning and end of a
group through XPath boolean expressions applied to adjacent records. The sx:innerGroup instruction will always skip a record if the record does not satisfy its grouping criteria.
The sx:outerGroup instruction, in contrast,
will always pass the record down to the next nested grouping instruction (if any), even if the record does not satisy its own grouping criteria,
but in that case it will not emit any tags inbetween.

The sx:innerGroup and sx:outerGroup elements are the most general grouping elements,
and sx:groupBy becomes a special case.
The fragment below will emit the same tags as the corresponding sx:groupBy section in the
previous example.

<sx:recordMapping name="plansMapping">
 <Plans>
 <sx:innerGroup>
 <sx:startGroup test="not(sx:previous//project)
 or sx:current//project != sx:previous//project"/>
 <Plan>
 ...

Note the sx:previous and sx:current elements appearing in the XPath expression; these refer to the current and previous records in the record stream.
An sx:next element can also be used.

 Extendability
 Serving XML works as an "inversion of control" (IoC) container
that supports assembling components from a variety of projects - the Apache FOP project,
the Sun MSV project and others - and making them work together to process records and XML.
The term "inversion" conveys the idea that the Serving XML container does not instantiate
components directly, but rather supports an extendible component assembly framework
that allows externally defined components to be injected into the container. See for a discussion of inversion
of control containers.

New components can be created as extensions and used interchangeably with framework components in resources
scripts. The edtftpj extension, for example, provides the edt:ftpSource
and edt:ftpSink implementations of the abstract sx:streamSource
and sx:streamSink components.

 Summary

Serving XML is an open source project that is primarily about content conversion, providing a markup language for expressing flat-XML, XML-flat, flat-flat, and XML-XML
transformations in pipelines. This article provides a brief introduction to the vocabulary of this language, and some examples of its flat-XML capabilities.

The examples referred to in this article are fragments of complete examples contributed by the following users: Pierre-Alexandre Losson, Shaun Woodrow,
Dimitrios Varsos, Pedro Mendoza and Ken Brewer. Many users have contributed use cases, examples and bug fixes, and to them I would like to express my gratitude.
A special thanks to Michael Kay for answering all of my
questions about XSLT and pipelines on the saxon and xsl mailing lists, in the early days of this project.

 XFlat
 Bob Lyons

 Converting Flat File Content into XML and Vice Versa
 XML 99, Philadelphia, December 1999

 XSLT
 Michael Kay

 XSLT 2nd Edition Programmer's Reference
 Wrox Press, 2001

 Rawlins
 Michael C. Rawlins

 Using XML with Legacy Business Applications
 Addison-Wesley Professional, 2003

 IoC
 Mike Spille

 Inversion of Control Containers
 The Spille Blog, 2004

