
Global large-scale stylesheet deployment case
study

G. Ken Holman
Copyright © 2005 Crane Softwrights Ltd.

$Date: 2005/11/16 13:53:51 $(UTC)

Abstract

In anticipation of a world-wide deployment of an XML authoring environment for documents modeled
according to a community-standard vocabulary, differing presentation requirements need to be ac-
commodated in different installations using a single presentation architecture. Legacy applications
and local presentation conventions guide the expectations of users to produce reports in the new en-
vironment that are identical or similar to the reports they have worked with in some cases for many
years. Only a stylesheet architecture designed for specialization and customization can accommodate
such a diverse set of presentation expectations.

The large-scale and widely-deployed Intelligence Production Environment (IPE) uses both XSLT
and XSL-FO to produce both HTML and PDF renditions of an XML document authored according
to a standardized community document model. XSLT is used to express the construction of the
result presentations from the source documents. XSL-FO is used to express the presentation semantics
for both HTML and PDF, thus promoting fidelity between the two renderings.

A presentation architecture of an extensive use of granular, modularized, imported XSLT stylesheet
fragments creates a baseline easily specialized for individual deployment requirements. Each organ-
ization deploying the system writes localization stylesheets to reflect the desired presentations
mimicking their legacy reports, writing only deviations from the baseline stylesheets without having
to write a stylesheet from scratch or having to rewrite large portions of existing behaviors.

This one architecture supports both the authors creating preview presentations locally on their
workstations, and a centralized server creating final presentations for shared access. The same
baseline and localization stylesheets are deployed in both environments, providing fidelity between
the previews and final presentations.

This architecture has been successfully deployed in the US Intelligence Community amongst a
growing number of organizations, supported by a core engineering group providing baseline main-
tenance and training to organization personnel. Having accomplished the isolation of baseline and
layered functionality, the stylesheets are also made available and used successfully outside of the
context of the authoring and publishing environment by users of other tools creating standardized
intelligence documents.

This paper overviews the principles of the architecture, the implementation techniques used to realized
the benefits, the deployments of the architecture both inside and outside of the authoring project,
and how anyone needing to accommodate similar requirements can approach their stylesheet design.

RenderX
1XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=18

Table of Contents
1. Introduction .. 3
2. Architecture .. 3
3. Implementation .. 5
4. Deployment .. 8

4.1. Stylesheet association ... 8
5. XSLT and XML techniques .. 9

5.1. Import and include ... 9
5.2. Naming top-level constructs ... 11
5.3. Namespace management ... 11
5.4. Documentation and completeness .. 12

5.4.1. DocBook-based embedding ... 13
5.5. Example stylesheets .. 13

6. Conclusion .. 15

RenderX
2XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Global large-scale stylesheet deployment case study

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=18

1. Introduction
In the United States, Executive Order 13388 dated 26 October 2005 (replacing Executive Order 13356 dated 27 August
2004), mandates that a broad range of actions be worked culminating with providing the President a plan to create an
interoperable "Trusted Terrorism Information Sharing Environment." This will provide the President with common
standards to improve information sharing.

There are thousands of people in the intelligence organizations of dozens of military and government organizations
who are responsible for writing intelligence information in reports. These reports are referred to as "products". Each
organization has a legacy of document formats and presentations for these products based on historical and logistical
requirements for working with the information captured.

It is a challenge to change the information processing of intelligence documents to work with a common standard while
maintaining a legacy appearance.

The intelligence community (IC) has worked together under the IC Metadata Standards for Publications (MSP) Charter
to enable a greater level of information interchange, thus contributing to the Executive Order. The Intelligence Com-
munity Metadata Working Group (IC MWG) https://www.icmwg.org/ is working on new standards and
markup-based implementations for representing IC content objects. Having organizations capture their intelligence
using these common XML document structures enables some of the interoperability mandated by the President.

But intelligence organizations (like many other organizations) are reluctant (to put it mildly) to abandon their legacy
report formats. They now expect their staff to continue to produce recognizable finished products while at the same
time fulfill the mandate placed on them to use the IC standards.

These finished products are typically now published in XML for interoperability in the intelligence community, in
Portable Document Format (PDF) for paginated presentation and in Hypertext Markup Language (HTML) for web
presentation. These products may be produced locally on an operator's desktop environment for a push-oriented distri-
bution to interested parties, or posted centrally in a repository for a pull-oriented distribution by interested parties. Indeed
both could easily happen in an operator's handling of a single document, by using the local publishing environment as
a preview mimicking the processes invoked in the repository for the preparation of the final form made centrally
available.

A large-scale standards-based deployment architecture can support these two objectives simultaneously across such a
large body of users. With appropriate baseline frameworks and implementation granularity, organizations can customize
their deployment to meet many legacy demands while supporting the shared community pool of intelligence products
in a portable fashion. Basing such an architecture on XML standards ensures the end products are in a vendor- and
platform-independent format, and any skills learned in supporting one's particular deployment can be exploited across
other XML initiatives in the organization.

The Intelligence Production Environment (IPE) https://ipe.d2lab.net/ successfully implements such an
extensible stylesheet architecture, providing an environment supporting the creation of pure MSP instances of the
Analytical Packet document model for distribution while mimicking legacy formats as best as practical for use within
an organization. The publishing components of this architecture are platform independent such that the production of
PDF and HTML reports in an operator's Windows-based desktop environment is the very same code that is run in a
Solaris-based central repository.

2. Architecture
The Defense Intelligence Agency (DIA) was the launch "customer" for IPE and has subsequently made the environment
available to other intelligence organizations. This initial implementation embodied all of the requirements necessary
to meet the publishing needs of intelligence analysts making reports, and has become the template from which other
installations of IPE are based.

RenderX
3XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Global large-scale stylesheet deployment case study

Re-format page sizes

https://www.icmwg.org/
https://ipe.d2lab.net/
http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=18

A commercial off-the-shelf (COTS) product is used in IPE as a supplement to Microsoft Word. This was mandated
by DIA so that the end users could work in an environment in which they were very familiar, yet is geared to the guided
authoring of XML documents according to the IC MWG document model described by the MSP schema. At this time
only the Analytical Packet model in the MSP suite is supported. To facilitate the COTS product in the maintenance of
the MSP information, a small number of additional information items was added to MSP, both elements and attributes,
using a separate namespace for IPE. Internally, this enhanced document model is referred to in the project as MSP+IPE
or simply "MSP+".

An IPE example of MSP+ is the attribute ipe:coordinates= used to capture the coordinates of an image that are
required by the COTS tool for authoring, yet not part of MSP. When converting an MSP+ instance to pure MSP, this
attribute is simply elided.

The document model needed to meet the business requirements for DIA is richer still than described by the MSP+
schema. Business rules in the creation of intelligence documents requires analysts to include mandatory information
not specified explicitly by MSP, yet are of a business nature and not a tool nature, so are also not specified explicitly
by MSP+. A small number of distinct information items was added to MSP+, using a separate namespace for DIA.
Internally, this further enhanced document model is referred to in the project as MSP+IPE+DIA or simply "MSP++".

DIA has the option internally of using MSP++ documents, and indeed is doing so when maintaining intermediate and
incomplete documents, but when disseminating completed documents to the rest of the intelligence community these
must be transformed to a pure MSP instance without any embellishment. This process requires the IPE and DIA constructs
to be coerced into MSP constructs suitable for recipients to use.

A DIA example of MSP++ is the mandatory recording of "prepared by" information for each document created. Such
information is not mandated by MSP and, therefore, no such information item was introduced into the MSP document
model. The MSP+IPE+DIA document model includes a <dia:PreparedBy> substructure that is mandatory for all
operators to fill out so as to meet the business requirement of having this information captured. Production of the final
MSP for dissemination to other organizations transforms the <dia:PreparedBy> element into a pure MSP
<msp:Section> element titled "Prepared By", with the nested information formatted into a simple paragraph.

Using this layered approach to schema design and namespace use, an IPE installation for a particular intelligence or-
ganization can be tuned to meet business rules for legacy processes. IPE users are not obliged to use the DIA extensions,
though they could choose to even supplement the DIA extensions and layer indefinitely the supplementation of an es-
tablished IPE installation. The norm so far, however, has been to have either zero or one layers of abstraction introduced
on top of the MSP+IPE structure. Information items can be introduced in an organization's arbitrary MSP+IPE+ORG
document model to meet custom requirements provided that pure MSP can be created from the supplemental information
for dissemination of the final document:

This layering of namespace-distinguished information items is mirrored in a very granular layering of XSLT stylesheet
fragments. The deployment of the stylesheet library incorporates two baseline implementations: one baseline for pure
MSP instances and one baseline built on that for MSP+IPE instances in support of the authoring tool.

RenderX
4XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Global large-scale stylesheet deployment case study

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=18

To create a localization for a given organization, one need only augment the schema by creating a new MSP+IPE+ORG
vocabulary in a customized MSP++ schema layer tuned for that organization, and enhance the processing by creating
a new XSLT layer accommodating organization-specific constructs for both visual presentation and transformation
into pure MSP for dissemination.

This layered approach is, therefore, a model for other organizations contemplating a global large-scale deployment of
authoring and publishing processes to meet customized requirements on top of a baseline implementation.

3. Implementation
The implementation of this stylesheet library must produce both PDF and HTML renditions of a given intelligence
document. When the document is instantiated following either the MSP+ or MSP++ structure, a pure MSP result must
also be produced for the purposes of sharing with other MSP-based systems.

Even though the IPE authoring tool is, at this time, producing at least an MSP+ and usually an MSP++ instance, it was
decided to base the stylesheet architecture on pure MSP and not the guaranteed MSP+. This allows the stylesheet library
to be used by users of other MSP-based authoring environments, and should a user of IPE reduce the MSP+ or MSP++
instance to pure MSP, then stylesheets are available for the reduced instance to be rendered.

The layering of namespace-distinguished information items in the document model is mirrored by the stacking of
XSLT stylesheet layers. An MSP baseline implementation of XSLT fragments produces both a PDF rendering and an
HTML rendering of a pure MSP instance. The following depiction (courtesy of IPE team member Joe Boysha) illustrates
the stylesheet library components the MSP baseline implementation:

In this depiction, the importation of fragments is shown primarily in the vertical direction, such that XSLT stylesheets
shown above import the XSLT stylesheets shown below, while the XSLT stylesheets side-by-each are sibling fragments
that don't have a direct importation relationship (though of course they have an implicit importation relationship described
in more detail below). Sibling stylesheet fragments could be all amalgamated into a single stylesheet, but the granular
approach used helps to separate functionality in smaller manageable distinct packages that can be edited simultaneously
by team members and managed in the project's source code control system. The limitations of a two-dimensional ar-
rangement of boxes does prevent the showing of some actual importation relationships so this diagram is used
primarily as a guideline.

RenderX
5XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Global large-scale stylesheet deployment case study

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=18

Note how the fragments on the left, starting with msp-common-fo.xsl are used in isolation for the production of
PDF renderings using XSL-FO as the expression of formatting properties, while the entire library is used for the pro-
duction of HTML renderings, starting with msp-common-html.xsl which actually imports msp-common-
fo.xsl as well as html-common.xsl. This two-stage serial approach ensures fidelity between the two renderings
by basing the HTML rendering on an interpretation of the XSL-FO expressing the PDF layout. Because XSL-FO is
an instance of XML, XSLT can be and is used in the IPE library to produce an instance of XHTML from an instance
of XSL-FO. Many projects implement a two-stage parallel approach that duplicates a lot of the effort required to
maintain two presentations and threatens the fidelity of the two results.

The basis of the creation of XHTML from XSL-FO is the publicly-available fo2html.xsl stylesheet. Recognizing,
however, that there may be some nuances of rendering either unacceptable or unimplemented in the publicly-available
stylesheet, importation layers built on top of this fragment allow for required specialization.

Note also how there is an MSP layer built on top of the XSL-FO and HTML layers. At this time, this layer is practically
a pass-through adding no explicit value-add to the rendering layers. In anticipation of building other stylesheet libraries
on top of the rendering core, however, MSP-specific functionality can be distilled out of the core into this MSP layer
when necessary in a future library, with other vocabulary-specific layers able to utilize the refined core. It was assumed
that we could not envisage a truly-common baseline from the get-go, so introducing this layer now reduces any restruc-
turing in the future.

At the time of building the stylesheet library, the IC community had not published any guidelines for the rendering of
MSP instances in either PDF or XHTML, so the IPE team built the baseline interpretation on common distilled require-
ments for the four DIA documents built for the initial delivery of the tool.

The following depiction shows the addition of an IPE layer to make an IPE baseline stylesheet library for MSP+ instances
on top of the MSP baseline library for pure MSP instances:

Note the addition shown on the right of the transformation from MSP+ instances to pure MSP. Each of the housekeeping
constructs needed by the IPE authoring component must be either massaged into pure MSP or removed from the instance
altogether. Since MSP+ is so very close to pure MSP, there are no dependencies on the XSL-FO or HTML rendering
components, and the ipe2msp.xsl stylesheet fragment is standalone.

RenderX
6XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Global large-scale stylesheet deployment case study

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=18

PDF renditions of MSP+ are created using the ipe-common-fo.xsl stylesheet that builds on the MSP rendering,
while XHTML renditions are created using the ipe-common-html.xsl stylesheet.

The IPE layer currently adds only the interpretation of IPE-specific constructs in MSP+, but may be embellished in
the future to override default MSP presentation in certain IPE contexts.

The following depiction shows the addition of an organizational layer for the rendering of MSP++ instances, colloquially
called by the project as a "localization" of the stylesheet library:

Legacy requirements are addressed here. Each organization may have business rules requiring an augmented vocabulary
in MSP++ and these new constructs need to be interpreted for presentation purposes. The localization layer addresses
the presentation differences for an organization above and beyond that supported in the baseline for MSP and MSP+
constructs.

Moreover, the DIA choices of presentation of MSP and MSP+ constructs implemented in the baselines may be deemed
inappropriate for a particular organization, so this layer provides the opportunity to take advantage of the XSLT import
hierarchy and supply template rules matching constructs at a higher level of importance than in the baselines. In this
way the organization's presentation of the MSP construct is engaged in place of baseline presentations. The stylesheet
writer can then attempt to mimic the legacy appearance and provide a rendition that is already familiar to users in the
organization.

Similarly, an organization-specific layer on top of the interpretation of MSP++ constructs into pure MSP ensures that
when an organization's documents are made available for use by others the transformed instance will conform to the
document model expected by other users in the intelligence community.

RenderX
7XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Global large-scale stylesheet deployment case study

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=18

4. Deployment
The XSLT 1.0 stylesheet library is implemented primarily in pure XSLT 1.0 constructs and, indeed, there is but one
single extension used by the library to convert a result tree fragment into a node tree. Through processor identification
facilities of XSLT 1.0 the library will engage the extension function as required for a number of popularly-used XSLT
1.0 processors, and if an organization is using a brand of processor not supported they can provide the single template
rule required.

In the first deployment the library is implemented in two environments: the author's Windows-based desktop and in a
Sun Solaris-based central repository. The Saxon XSLT processor is used in both environments as it is a Java-based
processor working identically on both platforms. In both environments, the MSP, PDF and HTML results can be produced
by selecting the appropriate entry-point into the stylesheet library by engaging the outermost stylesheet fragment
governing the desired output for the instance of the given MSP+ or MSP++ document model.

The directory structure of the stylesheet library is isolated from the directories supporting other functions of the IPE
environment. This allows the library to be picked up and deployed in non-IPE environments for the rendering of pure
MSP instances. Should an organization choose to internally distribute MSP+ or MSP++ instances for their own use in
other contexts, the library can also be deployed in this regard.

4.1. Stylesheet association
The HTML stylesheet processing is geared as a single-pass invocation by implementing a two-pass process in memory.
This is engaged using a processor extension to XSLT 1.0 that converts a result tree fragment into a node tree. This allows
MSP instances to point directly to the HTML stylesheets with stylesheet association as defined in ht-
tp://www.w3.org/1999/06/REC-xml-stylesheet-19990629.

An MSP example:

<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet href="../ipe/org/msp/ss/ap/msp-ap-html.xsl"
 type="text/xsl"?>
<AnalyticalPacket xmlns="urn:us:gov:ic:msp"
 xmlns:ism="urn:us:gov:ic:ism:v2"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <PublicationMetadata>
 <AdministrativeMetadata>
 <IdentifierList>
 ...

An MSP++ example:

<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet href="../ipe/org/dia/ss/ap/dia-dar-ap-ipe-html.xsl"
 type="text/xsl"?>
<AnalyticalPacket xmlns="urn:us:gov:ic:msp"
 xmlns:ism="urn:us:gov:ic:ism:v2"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:dia="urn:x-us:gov:ic:ipe:msp:dia">
 <PublicationMetadata>
 <AdministrativeMetadata>
 <IdentifierList>
 ...

RenderX
8XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Global large-scale stylesheet deployment case study

Re-format page sizes

http://www.w3.org/1999/06/REC-xml-stylesheet-19990629
http://www.w3.org/1999/06/REC-xml-stylesheet-19990629
http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=18

Internet Explorer is an example of a browser that recognizes stylesheet association and will automatically retrieve the
referenced stylesheet, apply the stylesheet to the MSP document and render the HTML result, merely by dragging and
dropping the MSP document onto the browser canvas.

5. XSLT and XML techniques

5.1. Import and include
The XSLT concept of importance, as implemented in the import tree, is the basis upon which an adaptable large-scale
stylesheet library can be built. One can specialize the template rules and top-level constructs of any XSLT stylesheet
by wrapping the stylesheet with an importing stylesheet. The importing stylesheet's top-level constructs are considered
more important than, thus supplanting, the imported stylesheet's top-level constructs of the same name and the same
source tree node match. The imported top-level constructs are ignored.

This happens at all levels of the import tree. Consider the following tree of importation:

XSLT importance puts the constructs in file.xsl at the highest level. Any top-level construct defined in this fragment
will override any and all definitions for that like-named construct defined in any other fragment. The file2.xsl
constructs are next in line and any not overridden by file.xsl are in play for the transformation. Importance then
acknowledges the constructs in file2a.xsl, file1.xsl, and file1a.xsl, in that order, such that the top-level
definitions in file1a.xsl are considered the least important.

Stylesheet inclusion using <xsl:include> is important when fragmentation is needed at a given level of importance
in the import tree. Consider the behavior of <xsl:apply-imports/> in order to supplement the baseline processing,
rather than supplant the baseline processing: this facility allows importing stylesheets to build part of the result tree,
engage the building accomplished by the imported stylesheets by executing this instruction, and then continue to build
part of the result tree.

If <xsl:import/> is used to pull in both the baseline and fragments of the importing layer, then when templates
in those fragments access imported stylesheets, there are no stylesheets being imported:

RenderX
9XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Global large-scale stylesheet deployment case study

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=18

However, if <xsl:import/> is used to pull in the baseline and <xsl:include/> is used to pull in the fragments
of the importing layer, then when templates in those fragments access imported stylesheets, the baseline is accessed
as anticipated:

RenderX
10XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Global large-scale stylesheet deployment case study

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=18

5.2. Naming top-level constructs
One might think that there would be easy opportunity for inadvertent name collision with so many stylesheet fragments
each defining top-level constructs such as templates, keys, variables, parameters and modes. Without safeguards, an
organization implementing a stylesheet fragment wrapper to the stylesheet library could inadvertently label one of its
own top-level constructs with the same name as a library construct when they were not doing so in order to override
the library construct. Such overriding would, however, happen and without error since the processor would conclude
the stylesheet was intentionally overriding the construct's definition.

The safeguard for this is the use of namespaces in the qualification of top-level construct names. Namespace prefixes
are used in XSLT names, where the URI string bound to the prefix qualifies the local name of the top-level construct.
As with XPath, the use of no prefix is interpreted as a name in no namespace. Most monolithic stylesheets don't use
qualification of names or modes because the stylesheet writer can manage the use of a few constructs. Even fragmented
stylesheets with one or a few developers may be able to track collisions in names and modes. However, when disparate
project teams are working independently to create separate parts of a stylesheet library to be used as a whole, then one
must take advantage of the available XSLT features to ensure there are no collisions and that components can be distinctly
identified.

An example declaration of a namespace qualified top-level construct is as follows (typically, though, the namespace
declaration would be higher up in the XML document tree):

<xsl:template match="abc:x" name="xyz:main"
 xmlns:xyz="urn:x-crane:xyz">

Similarly, an example use of a namespace qualified mode is as follows:

<xsl:apply-templates select="abc:y" mode="xyz:toc"
 xmlns:xyz="urn:x-crane:xyz">

In IPE a set of namespace URI strings is reserved for the MSP baseline library implementation. Another set is reserved
for the MSP+ layer implementing IPE constructs. In addition, each organization is obliged to use their own URI strings
for namespace-qualified constructs in their wrapper fragments for their top-level constructs that are unknown to the
baselines. Each of the outer layers knows the names and modes of the inner layers, while each of the inner layers has
no knowledge at all of any outer layer and is totally self contained with its inner stylesheet libraries.

An organization could, in effect, choose not to use namespaces for their top-level constructs, though the baseline
stylesheets do have defined behaviors for the unnamed mode. This would still work, but it would prevent their stylesheets
from themselves being imported by other organizations should other organizations wish to specialize the reports for
their own use. By encouraging organizations to follow these best-practice guidelines in the writing of stylesheet frag-
ments, future needs may be more easily met without need of retrofit.

5.3. Namespace management
Namespace URI strings are resources to be managed and XML syntax techniques provide ways of managing these
resources across large stylesheet libraries.

Two sets of namespaces are in play: the namespaces used in the source documents for the vocabularies being processed,
and the namespaces used in the stylesheet documents for the top-level constructs being managed. When dealing with
dozens of stylesheet fragments, a single change in any of the namespaces could have an impact on many of the files.
When managing the stylesheets in a source code control system, superfluous changes to files for only changing a

RenderX
11XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Global large-scale stylesheet deployment case study

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=18

namespace URI could skew indications of the history of changes for fragments. Furthermore, there is always the risk
of inadvertent changes to a stylesheet whenever opening and changing something even as simple as a namespace string.

An easy and robust method of maintaining URI strings is through XML general entities. Consider the following
namespaces.ent entity file declaring both an input namespace URI and a stylesheet maintenance URI:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!--input vocabularies-->
<!ENTITY ns-abc "urn:x-crane:abc">

<!--maintenance vocabularies-->
<!ENTITY ns-xyz "urn:x-crane:xyz">
<!--end of file-->

These strings can be brought into a stylesheet through a DOCTYPE declaration at the start of the stylesheet:

<!DOCTYPE xsl:stylesheet SYSTEM "namespaces.ent">
<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:abc="&ns-abc;"
 xmlns:xyz="&ns-xyz;"
 exclude-result-prefixes="xyz"
 version="1.0">
...
 <xsl:element name="def" namespace="&ns-abc;">
...

Note in the above <xsl:element> instruction how having the namespace URI string in an entity can make references
to the URI string very robust, in that there is no need to remember where a given URI string is being used.

Moreover, input namespaces change as vocabularies mature. Development teams struggle with methodologies for
minor and major revisions to vocabularies, and debate the impacts on processing systems when changing the namespace
URI strings. For the difficulties, some projects are reluctant to make such changes and end up with ambiguous definitions
of vocabularies: two vocabularies with slightly different semantics yet the same URI identifying string.

This technique of using general entities allows an entire stylesheet library to be installed in a directory and, with the
change of a single line in a single file, have that new installation support a revised version of an XML input vocabulary.

5.4. Documentation and completeness
Finding all of the very many constructs when navigating such a large import tree would be very difficult without having
a convention for documentation and helpful reports. When dealing with monolithic stylesheets, it is trivial to find a
given construct using a simple search. When dealing with dozens of imported and included fragments in dozens of
separate subdirectories, how is a developer to know where a given top-level construct is declared, so as to read the
documentation for that construct.

As part of the project, a stylesheet for stylesheets was created that looks for an infrastructure for documentation embedded
at the top-level of the XSLT stylesheets. XSLT allows top-level constructs in stylesheets to be in non-XSLT namespaces.

This infrastructure is in a micro-vocabulary that wraps arbitrary MSP vocabulary. The stylesheet for stylesheets finds
all of the infrastructure micro-vocabulary, extracts the MSP vocabulary, and then uses itself to format the MSP
vocabulary into a finalized report:

RenderX
12XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Global large-scale stylesheet deployment case study

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=18

The developer need only drag the top stylesheet fragment of the XSLT import tree into Internet Explorer to see the
complete import tree drawn in importance order, with the documentation embedded in each module exposed, and an
index at the end listing and linking where top-level constructs are declared.

Business rules regarding the writing of the stylesheet can also be added to the stylesheet formatting the appearance of
the stylesheet documentation. Business rules could include, for example, the enforcement of naming conventions, the
documentation of certain constructs, and the prohibition of constructs that might exert undo influence on other modules
of the stylesheet library.

This concept introduces a candidate step in the life cycle of writing a stylesheet: a manager could choose not to accept
a stylesheet fragment as being complete until it successfully passes the documentation and business rules enforced by
the documentation stylesheet.

5.4.1. DocBook-based embedding

This stylesheet library use of MSP for embedded documentation is an implementation paralleling XSLStyle™ (available
for free download from Crane Softwrights Ltd.'s web site) that uses DocBook for the embedded documentation
vocabulary.

In addition to requiring every top-level construct and every <xsl:param of every <xsl:template> to be docu-
mented, this stylesheet for stylesheets enforces the namespace qualification of top level constructs and modes, thus
ensuring a stylesheet writer does not inadvertently leave off a namespace prefix (which would not, in and of itself,
trigger an error as it is syntactically correct), or conflict with a top-level declaration of a construct defined in another
module. Escape mechanisms allow stylesheet writers to declare their intention of working outside of the module's
namespace.

Using this stylesheet as an example, a development team can write additional business rules to suit their own practices
and uses of the stylesheet fragments.

5.5. Example stylesheets
Pulling together the concepts above into a simple two-stylesheet import tree, and using the namespaces.ent file
above, the following test.xsl stylesheet is the top of the import tree:

<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet type="text/xsl"
 href="../../../dev/xslstyle/xslstyle.xsl"?>

RenderX
13XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Global large-scale stylesheet deployment case study

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=18

<!DOCTYPE xsl:stylesheet SYSTEM "namespaces.ent">
<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.CraneSoftwrights.com/ns/xslstyle"
 xmlns:abc="&ns-abc;"
 xmlns:xyz="&ns-xyz;"
 exclude-result-prefixes="xs xyz"
 version="1.0">

<xsl:import href="testi.xsl"/>

<xs:doc
 info="$Id: ipeoverview.xml,v 1.12 2005/11/16 13:53:51 G. Ken Holman Exp $"
 filename="test.xsl" global-ns="xyz">
 <title>Illustration of namespace entity use</title>
 <para>
 This is a simple stylesheet used only for illustrative purposes.
 </para>
</xs:doc>

<xs:template>
 <para>Template matching and using namespace-qualified elements.</para>
 <xs:param name="arg">
 <para>The meaning of this argument is spelled out here.</para>
 </xs:param>
</xs:template>
<xsl:template match="abc:x" name="xyz:main"
 xmlns:xyz="urn:x-crane:xyz">
 <xsl:param name="arg" select="true()"/>
 ...whatever...
 <xsl:element name="def" namespace="&ns-abc;">
 ...more of the same...
 </xsl:element>
</xsl:template>

</xsl:stylesheet>

The testi.xsl stylesheet is imported:

<?xml version="1.0" encoding="iso-8859-1"?>
<?xml-stylesheet type="text/xsl"
 href="../../../dev/xslstyle/xslstyle.xsl"?>
<!DOCTYPE xsl:stylesheet SYSTEM "namespaces.ent">
<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.CraneSoftwrights.com/ns/xslstyle"
 xmlns:abc="&ns-abc;"
 xmlns:xyz="&ns-xyz;"
 exclude-result-prefixes="xs xyz"
 version="1.0">

<xs:doc
info="$Id: ipeoverview.xml,v 1.12 2005/11/16 13:53:51 G. Ken Holman Exp $"

RenderX
14XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Global large-scale stylesheet deployment case study

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=18

filename="testi.xsl" global-ns="xyz">
 <title>Imported constructs</title>
 <para>
 This is a simple imported stylesheet used
 <emphasis>only for illustrative purposes.</emphasis>
 Use the following syntax to pull in this fragment:
 </para>
 <programlisting><![CDATA[
 <xsl:import href="../path/to/the/imported/file/testi.xsl"/>
]]></programlisting>
</xs:doc>

<xs:template>
 <para>Template matching and using namespace-qualified elements.</para>
</xs:template>
<xsl:template match="abc:y" name="xyz:other">
 <xsl:call-template name="xyz:main"/>
</xsl:template>

</xsl:stylesheet>

Note above how the full DocBook vocabulary is available to be used in the documentation of the constructs.

6. Conclusion
It is critically important to plan ahead when implementing a world-wide deployment of an XSLT stylesheet library for
multiple transformations. The stylesheet library for the Intelligence Production Environment (IPE) illustrates how
important choices in stylesheet granularity, the naming of top-level constructs and the organization of the stylesheet
import tree can provide different baseline implementations easily specialized to specific requirements in different de-
ployments.

The IPE stylesheet library demonstrates the portability of using W3C standards across both PC and server environments,
and how a single investment in the creation of the fragmented baselines can be exploited across many different user
groups in a given product environment. Using this re-use approach also supports downstream operations and maintenance
by not repeatedly creating monolithic stylesheets that need to be separately supported with changes. Moreover, planning
ahead to anticipate needs beyond just the product use has created a stylesheet library that can be deployed outside of
the customer groups to general users in the worldwide intelligence community.

RenderX
15XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Global large-scale stylesheet deployment case study

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=18

Biography
G. Ken Holman

CTO
Crane Softwrights Ltd. [http://www.CraneSoftwrights.com]
Kars
Ontario
Canada

Mr. G. Ken Holman is the Chief Technology Officer for Crane Softwrights Ltd., a Canadian corporation offering
XSL, XSLT and XSL-FO language training, Python and OmniMark programming, and general SGML and XML
related computer systems analysis services regarding text markup technologies to international customers. Mr.
Holman is the current international secretary of the ISO subcommittee responsible for the SGML family of
standards, an invited expert to the W3C and member of the W3C Working Group that developed XML from
SGML, the former Canadian chair of the ISO subcommittee, the founding chair of the OASIS XML Conformance
Technical Committee, the founding chair of the OASIS XSLT/XPath Conformance Technical Committee, the
current chair of the OASIS UBL Human Interface Subcommittee and co-chair of the OASIS UBL Small Business
Subset subcommittee, the author of electronically-published and print-published books on XML-related technologies,
and has often been a speaker at related conferences. Prior to establishing Crane, Mr. Holman spent over 13 years
in a software development and consulting services company working in the NAPLPS and the SGML industries.

RenderX
16XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Global large-scale stylesheet deployment case study

Re-format page sizes

http://www.CraneSoftwrights.com
http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=18

	1. Introduction
	2. Architecture
	3. Implementation
	4. Deployment
	4.1. Stylesheet association

	5. XSLT and XML techniques
	5.1. Import and include
	5.2. Naming top-level constructs
	5.3. Namespace management
	5.4. Documentation and completeness
	5.4.1. DocBook-based embedding

	5.5. Example stylesheets

	6. Conclusion

