
Overview of Visual Basic 9.0
Erik Meijer

Amanda Silver

Paul Vick

Abstract

"Visual Basic code-named Orcas" (Visual Basic 9.0) introduces several language extensions that
build on "Visual Basic code-named Whidbey" (Visual Basic 8.0) to support data-intensive program-
ming --creating, updating, and querying relational databases, XML documents, and object graphs--
in a unified way. In addition, Visual Basic 9.0 introduces several new language features to enhance
Visual Basic's unique facility for static typing where possible, and dynamic typing where necessary.
These new features are: Implicitly typed local variables, Query comprehensions, Object initializers,
Anonymous types, Full integration with the Linq framework, Deep XML support, Relaxed delegates,
Nullable types, Dynamic interfaces, and Dynamic identifiers.

This document is an informal overview of these new features. More information, including updates
to the Visual Basic language definition and compiler previews, is available on the Visual Basic De-
veloper Center (http://msdn.microsoft.com/vbasic/default.aspx).

RenderX
1XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Re-format page sizes

http://msdn.microsoft.com/vbasic/default.aspx
http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

Table of Contents
1. Getting Started With Visual Basic 9.0 ... 3
2. Implicitly Typed Local Variables ... 5
3. Object and Collection Initializers .. 6
4. Anonymous Types .. 7
5. Deep XML Support .. 8
6. Query Comprehensions .. 10
7. Extension Methods ... 13
8. Nested Functions .. 14
9. Nullable Types ... 15
10. Relaxed Delegates ... 18
11. Dynamic Interfaces (or Strong "Duck Typing") ... 19
12. Dynamic Identifiers ... 20
13. Conclusion .. 22

RenderX
2XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Overview of Visual Basic 9.0

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

1. Getting Started With Visual Basic 9.0
To see the power of these language features at work, let's start with a real world example --the CIA World Factbook
database http://www.odci.gov/cia/publications/factbook/. The database contains a variety of geographic, economic,
social, and political information about the worlds countries. For the sake of our example, we begin with a schema for
the name of each country and its capital, total area, and population. We represent this schema in Visual Basic 9.0 using
the following class:

Class Country
 Public Property Name As String
 Public Property Area As Float
 Public Property Population As Integer
End Class

Here is a small subset of the country database that we will use as our running example:

Dim Countries = _
{ new Country{ _
 .Name = "Palau", .Area = 458, .Population = 16952 }, _
 new Country{ _
 .Name = "Monaco", .Area = 1.9, .Population = 31719 }, _
 new Country{ _
 .Name = "Belize", .Area = 22960, .Population = 219296 }, _
 new Country{ _
 .Name = "Madagascar", .Area = 587040, .Population = 13670507 } _
}

Given this list, we can query for all countries whose population is less than one million by using the following query
comprehension:

Dim SmallCountries = _
 Select Country _
 From Country In Countries _
 Where Country.Population < 1000000

For Each Country As Country In SmallCountries
 Console.WriteLine(Country.Name)
Next

Because only Madagascar has more than one million inhabitants, the above program would print the following list of
country names when compiled and run:

Palau
Monaco

RenderX
3XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Overview of Visual Basic 9.0

Re-format page sizes

http://www.odci.gov/cia/publications/factbook/
http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

Belize

Let's examine the program to understand the features of Visual Basic 9.0 that made this so simple to write. First of all,
the declaration of the Countries variable

Dim Countries = _
 { new County { .Name = "Palau", .Area = 458, .Population = 16952 }, _
 ... _
 }

uses the new object-initializer syntax new Country {..., .Area = 458, ...} to create a complex object
instance through a concise, expression-based syntax similar to the existing With statement.

The declaration also illustrates implicitly typed local-variable declarations, where the compiler infers the type of the
local variable Countries from the initializer expression on the right-hand side of the declaration. The declaration
above is precisely equivalent to an explicitly typed local-variable declaration of type Country().

Dim Countries As Country() = {...}

To repeat, this is still a strongly typed declaration; the compiler has automatically inferred the type of the right-hand
side of the local declaration, and there is no need for the programmer to manually enter that type into the program.

The local-variable declaration SmallCountries is initialized with a SQL-style query comprehension to filter out
all countries that have fewer than one million inhabitants. The resemblance to SQL is intentional, enabling programmers
who already know SQL to get started with Visual Basic query syntax all the more quickly.

Dim SmallCountries = _
 Select Country _
 From Country In Countries _
 Where Country.Population < 1000000

Note that we have another application of implicit typing: the compiler infers the type of SmallCountries as IE-
numerable(Of Country). The compiler translates the query comprehension itself into standard query operators.
In this case, the translation could be as simple as the following:

Function F(Country As Country) As Boolean
 Return Country.Population < 1000000
End Function

Dim SmallCountries As IEnumerable(Of Country) = _
 Countries.Where(AddressOf F)

RenderX
4XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Overview of Visual Basic 9.0

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

The expanded syntax passes the compiler-generated local function as a delegate AddressOf F to the extension
function Where, which is defined in the standard query operator library as an extension of the IEnumerable(Of
T) interface.

Now that we have seen a few of the new features in Visual Basic 9, let us drill down into a more detailed overview.

2. Implicitly Typed Local Variables
In an implicitly typed local-variable declaration, the type of the local variable is inferred from the initializer expression
on the right-hand side of a local declaration statement. For example, the compiler infers the types of all the following
variable declarations:

Dim Population = 31719
Dim Name = "Belize"
Dim Area = 1.9
Dim Country = New Country{ .Name = "Palau", ...}

Hence they are precisely equivalent to the following, explicitly typed declarations:

Dim Population As Integer = 31719
Dim Name As String = "Belize"
Dim Area As Float = 1.9
Dim Country As Country = New Country{ .Name = "Palau", ...}

Because types of local-variable declarations are inferred by default, no matter what the setting of Option Strict
is, access to such variables is always early-bound. The programmer must explicitly specify late binding in Visual Basic
9.0, by explicitly declaring variables as of type Object, as follows:

Dim Country As Object = new Country{ .Name = "Palau", ... }

Requiring explicit late binding prevents accidentally using late binding and, more importantly, it allows powerful ex-
tensions of late binding to new data types such as XML, as we will see below. There will be an optional project-level
switch to toggle the existing behaviour.

The loop-control variable in a For...Next or a For Each...Next statement can also be an implicitly typed
variable. When the loop-control variable is specified, as in For Dim I = 0 To Count, or as in For Each
Dim C In SmallCountries, the identifier defines a new, implicitly typed local variable, whose type is inferred
from the initializer or collection expression and is scoped to the entire loop. This use of Dim to the right of For is new
to Visual Basic 9.0, as are implicitly typed loop-control variables.

With this application of type inference, we can rewrite the loop that prints all small countries as follows:

For Each Dim Country In SmallCountries
 Console.WriteLine(Country.Name)
Next

The type of Country is inferred to be Country, the element type of SmallCountries.

RenderX
5XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Overview of Visual Basic 9.0

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

3. Object and Collection Initializers
In Visual Basic, the With statement simplifies access to multiple members of an aggregate value without specifying
the target expression multiple times. Inside the With statement block, a member-access expression starting with a
period is evaluated as if the period were preceded by the target expression of the With statement. For example, the
following statements initialize a new Country instance and subsequently initializes its fields to the required values:

Dim Palau = New Country()
With Palau
 .Name = "Palau"
 .Area = 458
 .Population = 16952
End With

The new Visual Basic 9.0 object initializers are an expression-based form of With for creating complex object instances
concisely. Using object initializers, we can capture the above two statements into a single (implicitly typed) local de-
claration, as follows:

Dim Palau = New Country { _
 .Name = "Palau", _
 .Area = 458, _
 .Population = 16952
}

This style of object initialization from expressions is important for queries. Typically, a query looks like an object de-
claration initialized by a Select clause on the right-hand side of the equals sign. Because the Select clause returns
an expression, we must be able to initialize the entire object with a single expression.

As we have seen, object initializers are also convenient for creating collections of complex objects. Any collection
that supports an Add method can be initialized using a collection initializer expression. For instance, given the declar-
ation for cities as the partial class,

Partial Class City
 Public Property Name As String
 Public Property Country As String
 Public Property Longitude As Float
 Public Property Latitude As Float
End Class

we can create a List(Of City) of capital cities of our example countries as follows:

Dim Capitals = New List(Of City){ _
 { .Name = "Antanarivo", _
 .Country = "Madagascar", _
 .Longitude = 47.4, _
 .Lattitude = -18.6 }, _
 { .Name = "Belmopan", _
 .Country = "Belize", _

RenderX
6XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Overview of Visual Basic 9.0

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

 .Longitude = -88.5, _
 .Latitude = 17.1 }, _
 { .Name = "Monaco", _
 .Country = "Monaco", _
 .Longtitude = 7.2, _
 .Latitude = 43.7 }, _
 { .Country = "Palau",
 .Name = "Koror", _
 .Longitude = 135, _
 .Latitude = 8 } _
}

This example also uses nested object initialers, where the constructors of the nested initializers are inferred from the
context. In this case, each nested initializer is precisely equivalent to the full form New City{...}.

4. Anonymous Types
Often, we just want to remove, or to project out, certain members of a type as the result of a query. For example, we
might want to know just the Name and Country of all tropical capital cities, using the Latitude and Longitude
columns in the source data to identify the tropics, but projecting away those columns in the result. In Visual Basic 9.0,
we do this by creating a new object instance --without naming the type --for each city C whose latitude is in between
the tropic of Cancer and the tropic of Capricorn:

Const TropicOfCancer = 23.5
Const TropicOfCapricorn = -23.5

Dim Tropical = Select New{ .Name = City.Name, .Country = City.Country } _
 From City In Capitals _
 Where TropicOfCancer =< City.Latitude _
 AndAlso City.Latitude <= TropicOfCapricorn

The inferred type of the local variable Tropical is a collection of instances of an anonymous type, that is, IEnu-
merable(Of { Name As String, Country As String }). The Visual Basic compiler will create a
new, system-generated class, for example, _Name_As_String_Country_As_String_, whose member names
and types are inferred from the object initializer, as follows:

Class _Name_As_String_Country_As_String_
 Public Property Name As String
 Public Property Country As String
 Public Default Property Item(Index As Integer) As Object
 ...
End Class

Within the same program, the compiler will merge identical anonymous types. Two anonymous object initializers that
specify a sequence of properties of the same names and types in the same order will produce instances of the same
anonymous type. Externally, Visual Basic-generated anonymous types are erased to Object, which allows the
compiler to uniformly pass anonymous types as arguments and results of functions. For use within Visual Basic code,
the compiler decorates the generated class with special custom attributes to remember that the type

RenderX
7XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Overview of Visual Basic 9.0

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

_Name_As_String_Country_As_String_ actually represents the anonymous type { Name As String,
Country As String }.

Because anonymous types are typically used to project members of an existing type, Visual Basic 9.0 allows the
shorthand projection notation New { City.Name, City.Country } to abbreviate the long-form New {
.Name = City.Name, .Country = City.Country }. When used in the result expression of a query
comprehension, we can abbreviate projection initializers even further, as follows:

Dim Tropical = Select City.Name, City.Country _
 From City In Capitals _
 Where TropicOfCancer =< City.Latitude _
 AndAlso City.Latitude >= TropicOfCapricorn

Note that both of these abbreviated forms are identical in meaning to the long form above.

5. Deep XML Support
XLinq is a new, in-memory XML programming API designed specifically to leverage the latest .NET Framework
capabilities such as the Language-Integrated Query framework. Just as query comprehensions add familiar, convenient
syntax over the underlying standard .NET Framework query operators, Visual Basic 9.0 provides deep support for
XLinq through XML literals and late binding over XML.

To illustrate XML literals, let us query over the essentially flat relational data sources Countries and Capitals
to construct a hierarchical XML model that nests the capital of each country as a child element and calculates the
population density as an attribute.

To find the capital for a given country, we do a join on the name-member of each country with the country-member
of each city. Given a country and its capital, we can then easily construct the XML fragment by filling in embedded
expression holes with computed values. We would write a "hole" for a name attribute with parentheses, as in
Name=(Country.Name), and a "hole" for a child element with special angle-bracket syntax borrowed from
ASP.NET, as in <Name><%= City.Name %></Name>. Here is our query that combines XML literals and query
comprehensions:

Dim CountriesWithCapital As XElement = _
 <Countries>
 <%= Select <Country Name=(Country.Name)
 Density=(Country.Population/Country.Area)>
 <Capital>
 <Name><%= City.Name %></Name>
 <Longitude><%= City.Longitude %></Longtitude>
 <Latitude><%= City.Latitude %></Latitude>
 </Capital>
 </Country> _
 From Country In Countries, City In Capitals _
 Where Country.Name = City.Country %>
 </Countries>

Note that the type XElement could be omitted from the declaration, in which case it will be inferred, just like any
other local declaration. We leave the explicit type in for this example, to make a point below.

RenderX
8XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Overview of Visual Basic 9.0

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

In this declaration, we want the result of the Select query to be substituted inside the <Countries> element. Thus,
the Select query is the content of the first "hole," demarcated by the familiar ASP.NET style tags <%= and %> inside
<Countries>. Because the result of a Select query is an expression, and XML literals are expressions, it is nat-
ural, then, to nest another XML literal in the Select itself. This nested literal itself contains nested attribute "holes"
for Country.Name and the computed population density ratio Country.Population/Country.Area, and
nested element "holes" for the name and coordinates of the capital city.

When compiled and run, the above query will return the following XML document (reformatted slightly to save space):

<Countries>
 <Country Name="Palau" Density="0.037117903930131008">
 <Capital>
 <Name>Koror</Name><Longitude>135</Longitude><Latitude>8</Latitude>
 </Capital>
 </Country>
 <Country Name="Monaco" Density="16694.21052631579">
 <Capital>
 <Name>Monaco</Name><Longitude>7.2</Longitude><Latitude>3.7</Latitude>
 </Capital>
 </Country>
 <Country Name="Belize" Density="9.5512195121951216">
 <Capital>
 <Name>Belmopan</Name><Longitude>-88.5</Longitude><Latitude>17.1</Latitude>

 </Capital>
 </Country>
 <Country Name="Madagascar" Density="23.287181452711909">
 <Capital>
 <Name>Antananarivo</Name>
 <Longitude>47.4</Longitude><Latitude>-18.6</Latitude>
 </Capital>
 </Country>
</Countries>

Visual Basic 9.0 compiles XML literals into normal System.Xml.XLinq objects, ensuring full interoperability
between Visual Basic and other languages that use XLinq. For our example query, the code produced by the compiler
(if we could see it) would be:

Dim CountriesWithCapital As XElement = _
 New XElement("Countries", _
 Select New XElement("Country", _
 New XAttribute("Name", Country.Name), _
 New XAttribute("Density", Country.Population/Country.Area), _
 New XElement("Capital", _
 New XElement("Name", City.Name), _
 New XElement("Longitude", City.Longitude), _
 New XElement("Latitude", City.Latitude)))
 From Country In Countries, City In Capitals _
 Where Country.Name = City.Country)

RenderX
9XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Overview of Visual Basic 9.0

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

Besides constructing XML, Visual Basic 9.0 also simplifies accessing XML structures via late binding over XML;
that is, identifiers in Visual Basic code are bound at run time to corresponding XML attributes and elements. For example,
we can print out the population density of all example countries as follows:

• Use the child axis expression CountriesWithCapital.Country to get all "Country" elements from the
CountriesWithCapital XML structure;

• Use the attribute axis expression Country.@Density to get the "Density" attribute of the Country element;

• Use the descendants axis expression Country...Latitude --written literally as three dots in the source code-
- to get all "Latitude" children of the Country element, no matter how deeply in the hierarchy they occur;
and

• Use the extension indexer on IEnumerable(Of T) to select the first element of the resulting sequence.

If we put this all together, the code looks like this:

For Each Dim Country In CountriesWithCapital.Country
 Console.WriteLine("Density = "+ Country.@Density)
 Console.WriteLine("Latitude = "+ Country...Latitude(0))
Next

The compiler knows to use late binding over normal objects when the target expression of a declaration, assignment,
or initialization is of type Object rather than of some more specific type. Likewise, the compiler knows to use late
binding over XML when the target expression is of type, or collection of, XElement, XDocument, or XAttribute.

As a result of late binding over XML, the compiler translates as follows:

• The child-axis expression CountriesWithCapital.Country translates into the raw XLinq call Coun-
triesWithCapital.Elements("Country"), which returns the collection of all child elements named
"Country" of the Country element;

• The attribute axis expression Country.@Density translates into Country.Attribute("Density"),
which returns the single child attribute named "Density" of Country; and

• The descendant axis expression Country...Latitude(0) translates into a combination of ElementAt(Coun-
try.Descendants(Latitude),0), which returns the collection of all elements named at any depth below
Country.

6. Query Comprehensions
Query comprehensions provide a language integrated syntax for queries that is very similar to SQL, but adopted to fit
well with the look and feel of Visual Basic on the one hand, and on the other hand to integrate smoothly with the new
.NET language integrated query framework.

Those familiar with the implementation of SQL will recognize, in the underlying .NET Framework sequence operators,
many of the compositional relational-algebra operators such as projection, selection, cross-product, grouping, and
sorting that represent query plans inside the query processor.

Because the semantics of query comprehensions are defined by translating them into sequence operators, the underlying
operators are bound to whatever sequence operators are in scope. This implies that by importing a particular implement-
ation, the query-comprehension syntax can effectively be re-bound by the user. In particular, query comprehensions
can be re-bound to a sequence-operators implementation that uses the DLinq infrastructure, or a local query optimizer

RenderX
10XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Overview of Visual Basic 9.0

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

that attempts to distribute the execution of the query over several local or remote data sources. This rebinding of the
underlying sequence operators is similar in spirit to the classic COM provider model, whereby different implementations
of the same interface can support a great variety of operational and deployment choices without modifying the
overlying application code.

The basic Select...From...Where... comprehension filters out all values that satisfy the predicate in the
Where clause. One of our very first examples showed how to find all countries with fewer than a million inhabitants:

Dim SmallCountries = _
 Select Country _
 From Country In Countries _
 Where Country.Population < 1000000

Inside a sequence operator, the identifier It is bound to the current "row". Like Me, members of It are automatically
in-scope. The notion of It corresponds to XQuery's context item "." and it can be used like "*" in SQL. For example,
we can return the collection of all countries with their capitals by using the following query:

Dim CountriesWithCapital = _
 Select It _
 From Country In Countries, City In Capitals _
 Where Country.Name = City.Country

The inferred type for this local declaration is IEnumerable(Of { Country As Country, City As City
}).

Using the Order By clause, we can sort the results of queries according to any number of sort keys. For example,
the following query returns a list of the names of all countries, sorted by their longtitude in ascending order and by
their population in descending order:

Dim Sorted = _
 Select Country.Name _
 From Country In Countries, City In Capitals _
 Where Country.Name = City.Country
 Order By City.Longtitude Asc, Country.Population Desc

Aggregate operators such as Min, Max, Count, Avg, Sum ... operate on collections and "aggregate" them to single
values. We can count the number of small countries using the following query:

Dim N As Integer = _
 Select Count(Country) _
 From Country In Countries _
 Where Country.Population < 1000000

Like SQL, we provide special syntax for aggregates, which is extremely convenient for "tupling" multiple aggregate
operations. For example, to count the number of small countries and compute their average density with one statement,
we can write

RenderX
11XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Overview of Visual Basic 9.0

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

Dim R As { Total As Integer, Density As Double } = _
 Select New { .Total = Count(Country), _
 .Density = Avg(Country.Population/Country.Area) } _
 From Country In Countries _
 Where Country.Population < 1000000

This form of aggregation is shorthand for applying a compiler-generated aggregate function over the result of the
normal result set without any aggregation.

Aggregate functions appear most often in combination with partitioning the source collection. For example, we can
group all countries by whether they are tropical and then aggregate the count of each group. To do so, we introduce
the Group By clause. The helper function IsTropical encapsulates the test whether a Country has a tropical
climate:

Partial Class Country
Function IsTropical() As Boolean
 Return TropicOfCancer =< Me.Latitude _
 AndAlso Me.Latitude >= TropicOfCapricorn
 End Function
End Class

Given this helper function, we use exactly the same aggregation as above, but first partition the input collection of
Country and Capital pairs into groups for which Country.IsTropical is the same. In this case there are
two such groups: one that contains the tropical countries Palau, Belize, and Madagascar; and another that contains the
nontropical country Monaco.

CityCountryKey

KororPalauCountry.IsTropical() =
True

BelmopanBelizeCountry.IsTropical() =
True

AntanarivoMadagascarCountry.IsTropical() =
True

MonacoMonacoCountry.IsTropical() =
False

Then, we aggregate the values in these groups by computing the total count and average density. The result type is
now a collection of pairs of Total As Integer and Density As Double:

Dim CountriesByClimate _
 As IEnumerable(Of Total As Integer, Density As Double }) =
 Select New { .Total = Count(Country), _
 .Density = Avg(Country.Population/Country.Area) } _
 From Country In Countries, City In Capitals _
 Where Country.Name = City.Country
 Group By Country.IsTropical()

RenderX
12XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Overview of Visual Basic 9.0

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

The above query hides considerable complexity inasmuch as the result of the Group By clause is actually a collection
of grouping values of type IEnumerable(Of Grouping(Of { Boolean, { Country As Country,
City As City })), much like the table above. Each such Grouping item contains a Key member derived from
the key-extraction expression Country.IsTropical() and a Group that contains the unique collection of
countries and cities for which the key extraction expression has the same value. The Visual Basic compiler synthesizes
the user-defined aggregate function, that given such a grouping, calculates the required result by aggregating over each
partition.

Note that in the previous example each Group contains both the Country and Capital, whereas we only need the
Country to compute the final result of the query. The Group By clause allows for a preselection of the groups. For
example, we can partition the names of all countries by their hemisphere using the following comprehension:

Dim ByHemisphere As IEnumerable(Of Grouping(Of Boolean, String)) = _
 Select It _
 From Country In Countries, City In Capitals _
 Where Country.Name = City.Country
 Group Country.Name By City.Latitude >= 0

This would return the collection { New Grouping { .Key = False, .Group = { "Madagascar",
"Belize" }}, New Grouping { .Key = True, .Group = { "Palau" }}.

Query comprehensions in Visual Basic 9.0 are fully compositional, meaning that query comprehensions can be arbit-
rarily nested, restricted only by the static-typing rules. Compositionality makes it easy to understand a large query by
simply understanding each individual subexpression in isolation. Compositionality also makes it easy to define the
semantics and typing rules of the language clearly. Compositionality, as a design principle, is rather different from the
principles that underlie the design of SQL. The SQL language is not fully compositional, and rather has an ad-hoc
design with many special cases that grew over time as experience with databases accumulated in the community. Due
to the lack of full compositionality, however, it is not possible, in general, to understand a complex SQL query by un-
derstanding the individual pieces.

One of the reasons that SQL lacks compositionality is that the underlying relational data model is itself not composi-
tional. For instance, tables may not contain subtables; in other words, all tables must be flat. As a result, instead of
breaking up complex expressions into smaller units, SQL programmers write monolithic expressions whose results
are flat tables, fitting to the SQL data model. To quote Jim Gray, "anything in computer science that is not recursive
is no good." Because Visual Basic is based on the CLR type system, there are no restrictions on what types can appear
as components of other types. Aside from static typing rules, there are no restrictions on the kind of expressions that
can appear as components of other expressions. As a result, not only rows, objects, and XML, but also active directory,
files, registry entries, and so on, are all first-class citizens in query sources and query results.

7. Extension Methods
Much of the underlying power of the .NET Framework standard query infrastructure comes from extension methods.
In fact the compiler translates all query comprehensions directly into the standard query operator extension methods
defined by the namespace that is in scope. Extension methods are shared methods marked with custom attributes that
allow them to be invoked through instance-method syntax. In effect, extension methods extend existing types and
constructed types with additional methods.

Because extension methods are intended mostly for library designers, Visual Basic does not offer direct language
syntax support for declaring them. Instead, authors directly attach the required custom attributes on modules and
members to mark them as extension methods. The following example defines an extension method Count on arbitrary
collections:

RenderX
13XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Overview of Visual Basic 9.0

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

<System.Runtime.CompilerServices.Extension> _
Module MyExtensions
 <System.Runtime.CompilerServices.Extension> _
 Function Count(Of T)([Me] As IEnumerable(Of T)) As Integer
 For Each Dim It In [Me]
 Count += 1
 Next
 End Function
End Module

Recall that the square-bracket syntax is a keyword escape, permitting Me to be used as the name of an ordinary variable.
Because the extension method is a shared method that will simulate an instance method, it is convenient to use the
identifier Me as the name of the input, as we would in an actual instance method, but it must be escaped with brackets
since it is a keyword, and therefore not really allowed in a shared method.

Extension methods are just regular shared methods, hence we can invoke the Count function as we would invoke any
other shared function in Visual Basic, by just supplying explicitly the instance collection on which to operate:

Dim TotalSmallCountries = _
 MyExtensions.Count(Select Country _
 From Country In Countries _
 Where Country.Population < 1000000)

Extension methods come into scope through the normal Imports statement. These extension methods will then appear
as additional methods on the types given by their first parameter.

Imports MyExtensions

Dim TotalSmallCountries = _
 (Select Country _
 From Country In Countries _
 Where Country.Population < 1000000).Count()

Extension methods have lower precedence than regular instance methods; if the normal processing of an invocation
expression finds no applicable instance methods, the compiler tries to interpret the invocation as an extension-method
invocation.

The most natural way to write this query, however, is to use aggregate syntax, as we have seen before:

Dim TotalSmallCountries = _
 Select Count(Country) _
 From Country In Countries _
 Where Country.Population < 1000000

8. Nested Functions
Many of the standard query operators such as Where, Select, SelectMany, etc. are defined as extension methods
that take delegates of type Func(Of S,T) as arguments. In order for the compiler to translate comprehensions into

RenderX
14XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Overview of Visual Basic 9.0

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

the underlying query operators, or in order for Visual Basic programmers to call query operators directly, there is a
need to create delegates easily. In particular, we need to be able to create so-called closures, delegates that capture
their surrounding context. The Visual Basic mechanism for creating closures is through nested local function and
subroutine declarations.

To show the use of nested function, we will call into the raw underlying query operators as defined in the Sys-
tem.Query namespace. One of the extension methods is the TakeWhile function that yields elements from a sequence
while a test is true and then skips the remainder of the sequence.

<Extension> _
Shared Function TakeWhile(Of T) _
 (source As IEnumerable(Of T), Predicate As Func(Of T, Boolean)) _
 As IEnumerable(Of T)

The OrderByDescending operator sorts its argument collection in descending order according to the proved sort
key:

<Extension> _
Shared Function OrderByDescending (T, K As IComparable(Of K)) _
 (Source As IEnumerable(Of T), KeySelector As Func(Of T, K)) _
 As OrderedSequence(Of T)

An alternative way of finding all small countries is by first sorting them by population, and then using TakeWhile
to pick out all the countries that have less than a million inhabitants.

Function Population(Country As Country) As Integer
 Return Country.Population
End Function

Function LessThanAMillion(Country As Country) As Boolean
 Return Country.Population < 1000000
End Function

Dim SmallCountries = _
 Countries.OrderBy(AddresOf Population) _
 .TakeWhile(AddresOf LessThanAMillion)

Though it is not required for query comprehensions, Visual Basic may support direct syntax for anonymous functions
and subroutines (so called "lambda expressions"), which would be translated by the compiler to local function declar-
ations.

9. Nullable Types
Relational databases present semantics for nullable values that are often inconsistent with ordinary programming lan-
guages and often unfamiliar to programmers. In data-intensive applications, it is critical for programs to handle these
semantics clearly and correctly. Recognizing this necessity, in "Whidbey" the CLR has added run-time support for
nullability using the generic type Nullable(Of T As Struct). Using this type we can declare nullable versions
of value types such as Integer, Boolean, Date, etc. For reasons that will become apparent, the Visual Basic
syntax for nullable types is T?.

RenderX
15XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Overview of Visual Basic 9.0

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

For example, because not all countries are independent, we can add a new member to the class Country that represents
their independence date, if applicable:

Partial Class Country
 Public Property Independence As Date?
End Class

Just as with array types, we can also affix the nullable modifier on the property name, as in the following declaration:

Partial Class Country
 Public Property Independence? As Date
End Class

The independence date for Palau is #10/1/1994#, but the British Virgin Islands are a dependent territory of the
United Kingdom, and hence its independence date is Nothing.

Dim Palau = _
 New Country { _
 .Name = "Palau", _
 .Area = 458, _
 .Population = 16952, _
 .Independence = #10/1/1994# }

Dim VirginIslands = _
 New Country { _
 .Name = "Virgin Islands", _
 .Area = 150, _
 .Population= 13195, _
 .Independence = Nothing }

Visual Basic 9.0 will support three-valued logic and null propagation arithmetic on nullable values, which means that
if one of the operands of an arithmetic, comparison, logical or bitwise, shift, string, or type operation is Nothing, the
result will be Nothing. If both operands are proper values, the operation is performed on the underlying values of
the operands and the result is converted to nullable.

Because both Palau.Independence and VirginIslands.Independence have type Date?, the compiler
will use null-propagating arithmetic for the substractions below, and hence the inferred type for the local declaration
PLength and VILength will both be TimeSpan?.

Dim PLength = #8/24/2005# - Palau.Independence REM 3980.00:00:00

The value of PLength is 3980.00:00:00 because neither of the operands is Nothing. On the other hand, because
the value of VirginIslands.Independence is Nothing, the result is again of type TimeSpan?, but the value
of VILength will be Nothing because of null-propagation.

Dim VILength = #8/24/2005# - VirginIslands.Independence REM Nothing

RenderX
16XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Overview of Visual Basic 9.0

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

As in SQL, comparison operators will do null propagation, and logical operators will use three-valued logic. In If
and While statements, Nothing is interpreted as False; hence in the following code snippet, the Else branch is
taken:

If VILength < TimeSpan.FromDays(10000)
 ...
Else
 ...
End If

Note that under three-valued logic, the equality checks X = Nothing, and Nothing = X always evaluates to
Nothing; in order to check if X is Nothing, we should use the two-valued logic comparison X Is Nothing or
Nothing Is X.

The run time treats nullable values specially when boxing and unboxing to and from Object. When boxing a nullable
value that represents Nothing (that is, the HasValue property is False), that value is boxed into a null reference.
When boxing a proper value (that is, the HasValue property is True), the underlying value is first unwrapped and
then boxed. Because of this, no object on the heap has dynamic type Nullable(Of T); all such apparent types are
rather just T. Dually, we can unbox values from Object into either T, or into Nullable(Of T). However, the
consequence of this is that late-binding cannot dynamically decide wether to use two-valued or three-valued logic. For
example, when we do an early-bound addition of two numbers, one of which is Nothing, null propagation is used,
and the result is Nothing:

Dim A As Integer? = Nothing
Dim B As Integer? = 4711
Dim C As Integer? = A+B REM C = Nothing

However, when using late-bound addition on the same two values, the result will be 4711, because the late binding
will use two-valued logic based on the fact that the dynamic type of both A and B is Integer, not Integer?. Hence
Nothing is interpreted as 0:

Dim X As Object = A
Dim Y As Object = B
Dim Z As Object = X+Y REM Z = 4711

In order to ensure the correct semantics, we need to direct the compiler to use the null-propagating overload

Operator +(x As Object?, y As Object?) As Object?

by converting either of the operands to a nullable type using the ? operator:

Dim X As Object = A
Dim Y As Object = B
Dim Z As Object? = X?+Y REM Z = Nothing

Note that this implies that we must be able to create T? for any type T. The underlying CLR Nullable(Of T As
Struct) type constrains the argument type to non-nullable structures only. The Visual Basic compiler erases T? to

RenderX
17XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Overview of Visual Basic 9.0

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

T where T is not a non-nullable value type, and to Nullable(Of T) when T is a non-nullable value type. The
compiler keeps around enough internal metadata to remember that within the Visual Basic program, the static type in
both cases is T?.

10. Relaxed Delegates
When creating a delegate using AddressOf or Handles in Visual Basic 8.0, one of the methods targeted for binding
to the delegate identifier must exactly match the signature of the delegate's type. In the example below, the signature
of the OnClick subroutine must exactly match the signature of the event handler delegate Delegate Sub
EventHandler(sender As Object, e As EventArgs), which is declared behind the scenes in the
Button type:

Dim WithEvents B As New Button()

Sub OnClick(sender As Object, e As EventArgs) Handles B.Click
 MessageBox.Show("Hello World from" + B.Text)
End Sub

However, when invoking non-delegate functions and subroutines, Visual Basic does not require the actual arguments
to exactly match one of the methods we are trying to invoke. As the following fragment shows, we can actually invoke
the OnClick subroutine using an actual argument of type Button and of type MouseEventArgs, which are subtypes
of the formal parameters Object and EventArgs, respectively:

Dim M As New MouseEventArgs(MouseButtons.Left, 2, 47, 11,0)
OnClick(B, M)

Conversely, suppose that we could define a subroutine RelaxedOnClick that takes two Object parameters, and
then we are allowed to call it with actual arguments of type Object and EventArgs:

Sub RelaxedOnClick(sender As Object, e As Object) Handles B.Click
 MessageBox.Show("Hello World from" + B.Text))
End Sub
Dim E As EventArgs = M
Dim S As Object = B
RelaxedOnClick(B,E)

In Visual Basic 9.0, binding to delegates is relaxed to be consistent with method invocation. That is, if it is possible
to invoke a function or subroutine with actual arguments that exactly match the formal-parameter and return types of
a delegate, we can bind that function or subroutine to the delegate. In other words, delegate binding and definition will
follow the same overload-resolution logic that method invocation follows.

This implies that in Visual Basic 9.0 we can now bind a subroutine RelaxedOnClick that takes two Object
parameters to the Click event of a Button:

Sub RelaxedOnClick(sender As Object, e As Object) Handles B.Click
 MessageBox.Show(("Hello World from" + B.Text)
End Sub

RenderX
18XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Overview of Visual Basic 9.0

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

The two arguments to the event handler, sender and EventArgs, very rarely matter. Instead, the handler accesses
the state of the control on which the event is registered directly and ignore its two arguments. To support this common
case, delegates can be relaxed to take no arguments, if no ambiguities result. In other words, we can simply write the
following:

Sub RelaxedOnClick Handles B.Click
 MessageBox.Show("Hello World from" + B.Text)
End Sub

It is understood that delegate relaxation also applies when constructing delegates using an AddressOf or delegate
creation expression, even when the method group is a late-bound call:

Dim F As EventHandler = AddressOf RelaxedOnClick
Dim G As New EventHandler(AddressOf B.Click)

11. Dynamic Interfaces (or Strong "Duck Typing")
In purely statically typed languages such as C# or Java or Visual Basic (with Option Strict On), members must
exist at compile time on the type of the target expression. For example, the second assignment below causes a compile-
time error because class Country does not have an Inflation member:

Dim Palau As Country = Countries(0)
Dim Inflation = Country.Inflation

However, in many situations, it is necessary to access a member even though the type of the target type is unknown
at compile-time; this is a common scenario extension fields customized during application deployment. With Option
Strict Off, Visual Basic allows late-bound member access on targets of type Object. While powerful and extremely
flexible, late-binding comes with a cost. In particular, the user does not benefit from Intellisense, type inference, and
compile-time checking and needs casts or explicit types to move back to the early-bound world.

Even when making late-bound call, it is common to assume that the value adheres to a certain "interface." As long as
the object satisfies that interface, the call will succeed. The dynamic-language community calls this "Duck Typing":
if it walks like a duck and talks like a duck, then it is a duck. To illustrate the idea of Duck Typing, the example below
returns contact information from a School or a Citizen, both of which have a Name property of type String,
and a Phone property of type Integer.

Function ContactInfo(country As Country, Address As String) As Object
 For Each Dim school In Country.Schools
 If school.Address = addr Then
 Return New { Name := school,PrincipalName, school.Phone }
 End If
 Next

 For Each Dim citizen in Country.Citizens
 If citizen.Address = addr Then
 Return citizen
 End If

RenderX
19XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Overview of Visual Basic 9.0

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

 Next
End Function

When attempting to access the Name property of the result type using late-binding, there is a static assumption that
the value returned by ContactInfo has a Name member of type String. Using the new feature of dynamic inter-
faces, we this assumption can be made explicit. A target whose static type is a dynamic interface is always accessed
using late-binding, but the member access is statically typed. This means that the user benefits from full Intellisense
and type inference, and do not have to do any casting or explicit typing:

Dynamic Interface Contact
 Property Name As String
 Property Address As Integer
End Interface

Dim Contact As Contact = ContactInfo(country, "123 Main Street")
Dim Name = contact.Name REM Inferred As String.

12. Dynamic Identifiers
Late binding allows programmers to call methods on receiver objects whose type is unknown at compile-time. Dynamic
interfaces leverage the fact that programmers assume that statically they know the name and signatures of the members
they expect in a late-bound invocation. However, in certain truly dynamic scenarios, we might not even know the type
of the receiver nor the name of the member we want to invoke. Dynamic identifiers allow for extremely late-bound
calls where the identifier and the argument list of an invocation expression or the type and the argument list of a con-
structor call are computed dynamically.

An example of using dynamic identifiers is in test-driven development where you specify test information in an XML
file and execute each test dynamically. Suppose we want to test the IsTropical function that we defined earlier:

Partial Class Country
 Function IsTropical() As Boolean
 Return TropicOfCancer =< Me.Latitude _
 AndAlso Me.Latitude >= TropicOfCapricorn
 End Function
End Class

To do so, we first create an XML file that contains a number of tests that specify the method to be called and the ex-
pected result, the constructor for the receiver and the arguments for the actual call:

<tests>
 <test method="IsTropical" result="False">
 <receiver classname="Country">
 <argument>Monaco</argument>
 </receiver>
 </test>
 <test method="IsTropical" result="True">
 <receiver classname="Country">
 <argument>Belize</argument>

RenderX
20XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Overview of Visual Basic 9.0

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

 </receiver>
 </test>
</tests>

In other words, the XML file above encodes the following two tests

Debug.Assert(New Country("Monaco").IsTropical() = False)
Debug.Assert(New Country("Belize").IsTropical() = True)

Our task is to interpret the XML file such that it runs this code. Using type inference, extension methods, query com-
prehensions, dynamic identifiers and late-binding over XML it is very easy to write what is essentially a Visual Basic
interpreter in Visual Basic:

 Sub RunTests (Tests As XElement)
 For Each Dim Test In Tests
 REM dynamically create receiver object
 Dim ConstructorType = Type.GetType(Test.receiver.@classname)
 Dim ConstructorArgs = _
 (Select a.Value() From a In Test.receiver.argument).ToArray()
 Dim Instance = New(ConstructorType)(ConstructorArgs)
 REM dynamically call member
 Dim MethodName = CStr(test.@method)
 Dim MethodArgs = _
 (Select a.Value() From a In test.receiver.argument).ToArray()
 Dim Result = Receiver.(Method)(MethodArgs)
 REM check for expected result
 Debug.Assert(Result = test.@result)
 Next
 End Sub

The dynamic constructor call expression New(ConstructorType)(ConstructorArgs) dynamically computes
calls the constructor for the type ConstructorType computed from the class attribute as specified in the receiver
element of the test and the actual arguments ConstructorArgs as given by the argument child elements of the receiver
element of the test. Under the covers, it calls the Activator.CreateInstance(Type, Object()) method.
Similarly, the dynamic invocation expression Instance.(MethodName)(MethodArgs) dynamically calls the
method MethodName on the receiver Instance, passing MethodArgs as the actual arguments. In this case the
method name is taken from the method attribute of the test and the actual arguments are taken from the argument
children of the test. Under the covers, as in any late-bound situation, the normal NewLateBinding.LateCall is
used. Finally, the computed result is compared to the expected result as specified by the result attribute of the test.

The corresponding code in a language such as C# that does not support dynamism at all is at least an order of magnitude
larger and requires a lot of mind-numbing reflection plumbing code. However, even in many dynamic languages such
as Python, PHP, or VB 8, it is not as easy to call constructor and methods where the type repectively the method name
is computed at runtime. For example, in VB 8 the equivalent code would have been about five times as large and be
something incomprehensible like:

Sub RunTests (Tests As XElement)
 For Each Test As XElement In Tests.Elements("test")
 REM dynamically create receiver object

RenderX
21XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Overview of Visual Basic 9.0

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

 Dim ConstructorType As System.Type = _

 Type.GetType(Test.Element("receiver").Attribute("receiver"))
 Dim ConstructorArgsList As New List(Of Object)
 For Each Parameter As XElement In _
 XElementSequence.Elements(Test.Element("receiver"), "parameter")
 ConstructorArgsList.Add(Parameter.Value())
 Next
 Dim ConstructorArgs = ConstructorArgsList.ToArray()
 Dim Instance = Activator.CreateInstance _
 (ConstructorType, ConstructorArgs)
 REM dynamically call member
 Dim MethodName As String = Test.Attribute("receiver")
 Dim MethodArgsList As New List(Of Object)
 For Each MethodArg As XElement In _
 test.Elements("parameter")
 MethodArgsList.Add(MethodArg.Value())
 Next
 Dim MethodArgs As Object() = MethodArgsList.ToArray()
 REM cannot directly use late binding
 Dim Result = NewLateBinding.LateCall _
 (Instance, Nothing, MethodName, MethodArgs, _
 Nothing, False, False)
 REM check for expected result
 Debug.Assert(Result = test.@result)
 Next
End Sub

It is remarkable how lifting the arbitrary restriction on computing types and method names unleashes the full power
of reflexive metaprogramming that is typically only found in languages such as SmallTalk, directly to the Visual Basic
user. This makes Visual Basic 9.0 the language of choice for modern Agile and test-driven development methodologies.

13. Conclusion
Visual Basic 9.0 introduces a variety of new features. In this document, we have presented these features in a series
of linked examples, but the underlying themes deserve emphasis as well:

• Relational, object, and XML data. Visual Basic 9.0 unifies access to data independently of its source in relational
databases, XML documents, or arbitrary object graphs, however persisted or stored in memory. The unification
consists in styles, techniques, tools, and programming patterns. The especially flexible syntax of Visual Basic
makes it easy to add extensions like XML literals and SQL-like query comprehensions deeply into the language.
This greatly reduces the "surface area" of the new .NET Language Integrated Query APIs, increases the discover-
ability of data-access features through IntelliSense and Smart Tags, and vastly improves debugging by lifting foreign
syntaxes out of string data into the host language. In the future, we intend to increase the consistency of XML data
even further by leveraging XSD schemas.

• Increased dynamism with all the benefits of static typing. The benefits of static typing are well known: identifying
bugs at compile time rather than run time, high performance through early-bound access, clarity through explicitness
in source code, and so on. However, sometimes, dynamic typing makes code shorter, clearer, and more flexible.
If a language does not directly support dynamic typing, when programmers need it they must implement bits and
pieces of dynamic structure through reflection, dictionaries, dispatch tables, and other techniques. This opens up
opportunities for bugs and raises maintenance costs. By supporting static typing where possible, and dynamic
typing where needed, Visual Basic delivers the best of both worlds to programmers.

RenderX
22XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Overview of Visual Basic 9.0

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

• Reduced cognitive load on programmers. Features such as type inference, object initializers, and relaxed delegates
greatly reduce code redundancy and the number of exceptions to the rules that programmers need to learn and re-
member or look up, with no impact on performance. Features such as dynamic interfaces support IntelliSense even
in the case of late-binding, greatly improving discoverability over advanced features.

Although it may seem that the Visual Basic 9.0 list of new features is long, we hope the above themes will convince
you that it is coherent, timely, and dedicated to making Visual Basic the world's finest programming system. We hope
your imagination will be stimulated, too, and that you will join us in realizing that this is really just the beginning of
even greater things to come.

RenderX
23XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Overview of Visual Basic 9.0

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

Biography
Erik Meijer

Architect
Microsoft Corporation [http://www.microsoft.com]
Redmond
Washington
United States of America
http://www.research.microsoft.com/~emeijer/ [http://www.research.microsoft.com/~emeijer]

Erik Meijer is an architect in the WebData XML group at Microsoft where he works with the C# and Visual Basic
teams on language and type-systems for data integration in programming languages. Prior to joining Microsoft he
was an associate professor at Utrecht University and adjunct professor at the Oregon Graduate Institute. Erik is
one of the designers of the Mondrian scripting language, standard functional programming language Haskell98,
and Comega.

Amanda Silver
Program Manager
Microsoft Corporation [http://www.microsoft.com]
Redmond
Washington
United States of America

Amanda Silver is the program manager for the Visual Basic compiler.

Paul Vick
Technical Lead
Microsoft Corporation [http://www.microsoft.com]
Redmond
Washington
United States of America

Paul Vick is the technical lead for the Visual Basic language.

RenderX
24XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Overview of Visual Basic 9.0

Re-format page sizes

http://www.microsoft.com
http://www.research.microsoft.com/~emeijer
http://www.microsoft.com
http://www.microsoft.com
http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

	1. Getting Started With Visual Basic 9.0
	2. Implicitly Typed Local Variables
	3. Object and Collection Initializers
	4. Anonymous Types
	5. Deep XML Support
	6. Query Comprehensions
	7. Extension Methods
	8. Nested Functions
	9. Nullable Types
	10. Relaxed Delegates
	11. Dynamic Interfaces (or Strong "Duck Typing")
	12. Dynamic Identifiers
	13. Conclusion

