Re-format page sizes

Overview of Visual Basic 9.0
Erik Meijer
Amanda Silver

Paul Vick

Abstract

"Visual Basic code-named Orcas" (Visual Basic 9.0) introduces several language extensions that
build on "Visual Basic code-named Whidbey" (Visual Basic 8.0) to support data-intensive program-
ming --creating, updating, and querying relational databases, XML documents, and object graphs--
in a unified way. In addition, Visual Basic 9.0 introduces several new language features to enhance
Visual Basic's unique facility for static typing where possible, and dynamic typing where necessary.
These new features are: Implicitly typed local variables, Query comprehensions, Object initializers,
Anonymous types, Full integration with the Ling framework, Deep XML support, Relaxed delegates,
Nullable types, Dynamic interfaces, and Dynamic identifiers.

This document is an informal overview of these new features. More information, including updates
to the Visual Basic language definition and compiler previews, is available on the Visual Basic De-
veloper Center (http://msdn.microsoft.com/vbasic/default.aspx).

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.
RenderX

formatter

http://msdn.microsoft.com/vbasic/default.aspx
http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

Re-format page sizes

RenderX

formatter

Overview of Visual Basic 9.0

Table of Contents

1. Getting Started With Visual BasiC 9.0coiuiiiiiiii e 3
2. Implicitly Typed LOcal Variablesiiiiiii et 5
3. Object and Collection INFLIAIIZENScoouuiii s 6
4. ANONYIMOUS TYPES .. etieitieeiti ettt ettt ettt et et et et et et e e et et et et et et e e et e et n e e et e e et 7
5. DEEP XML SUPPOIT ... ettt ettt et et ettt ettt et et 8
6. QUENY COMPIERENSIONS ...ttt ettt ettt e et e ettt e e et 10
7. EXIENSION IMETNOMS ...t e et ettt ettt e e e e e e 13
8. INESLEA FUNCLIONS ...ttt ettt ettt ettt et e e e eaan s 14
0. NUITADIE TYPES ettt ettt e e et e 15
10. RElAXEU DEIBGALES ... ittt 18
11. Dynamic Interfaces (0r Strong "DUCK TYPING™) .. .cvvruniiiiiiie et 19
12. DYNAMIC TABNMTITIEIS ...ttt ettt e e e e e 20
130 CONCIUSTON ...ttt ettt ettt e et e e e e e 22
XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 2

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

Re-format page sizes

RenderX

formatter

Overview of Visual Basic 9.0

1. Getting Started With Visual Basic 9.0

To see the power of these language features at work, let's start with a real world example --the CIA World Factbook
database http://www.odci.gov/cia/publications/factbook/. The database contains a variety of geographic, economic,
social, and political information about the worlds countries. For the sake of our example, we begin with a schema for
the name of each country and its capital, total area, and population. We represent this schema in Visual Basic 9.0 using
the following class:

Cl ass Country
Public Property Nane As String
Public Property Area As Fl oat
Public Property Popul ation As | nteger
End d ass

Here is a small subset of the country database that we will use as our running example:

Di m Countries = _
{ new Country{ _
.Nane = "Pal au", .Area = 458, .Population = 16952 },
new Country{ _
. Nane = "Monaco", .Area = 1.9, .Population = 31719 },
new Country{ _
.Name = "Belize", .Area
new Country{ _
. Nane = "Madagascar", .Area = 587040, .Population = 13670507 } _

22960, .Popul ation = 219296 },

Given this list, we can query for all countries whose population is less than one million by using the following query
comprehension:

Dim Snal | Countries = _
Sel ect Country _
From Country In Countries _
Where Country. Popul ati on < 1000000

For Each Country As Country In Snall Countries
Consol e. Wi teLi ne(Country. Nane)
Next

Because only Madagascar has more than one million inhabitants, the above program would print the following list of
country names when compiled and run:

Pal au
Monaco

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 3

http://www.odci.gov/cia/publications/factbook/
http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

Re-format page sizes

RenderX

formatter

Overview of Visual Basic 9.0

Bel i ze

Let's examine the program to understand the features of Visual Basic 9.0 that made this so simple to write. First of all,
the declaration of the Count r i es variable

Dim Countries = _
{ new County { .Nanme = "Palau", .Area = 458, .Population = 16952 },

}

uses the new object-initializer syntax new Country {..., .Area = 458, ...} tocreate acomplex object
instance through a concise, expression-based syntax similar to the existing W t h statement.

The declaration also illustrates implicitly typed local-variable declarations, where the compiler infers the type of the
local variable Count ri es from the initializer expression on the right-hand side of the declaration. The declaration
above is precisely equivalent to an explicitly typed local-variable declaration of type Count ry() .

Dim Countries As Country() = {...}

To repeat, this is still a strongly typed declaration; the compiler has automatically inferred the type of the right-hand
side of the local declaration, and there is no need for the programmer to manually enter that type into the program.

The local-variable declaration Smal | Count ri es is initialized with a SQL-style query comprehension to filter out
all countries that have fewer than one million inhabitants. The resemblance to SQL is intentional, enabling programmers
who already know SQL to get started with Visual Basic query syntax all the more quickly.

Dim Smal | Countries = _
Sel ect Country _
From Country In Countries _
Where Country. Popul ati on < 1000000

Note that we have another application of implicit typing: the compiler infers the type of Sral | Countri es as | E-
nuner abl e(OF Count ry) . The compiler translates the query comprehension itself into standard query operators.
In this case, the translation could be as simple as the following:

Function F(Country As Country) As Bool ean
Return Country. Popul ati on < 1000000
End Function

Dim Snal | Countries As | Enunerabl e(Of Country) = _
Countri es. Wher e(AddressO F)

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 4

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

Re-format page sizes

RenderX

formatter

Overview of Visual Basic 9.0

The expanded syntax passes the compiler-generated local function as a delegate Addr essOF F to the extension
function Wher e, which is defined in the standard query operator library as an extension of the | Enuner abl e(Of
T) interface.

Now that we have seen a few of the new features in Visual Basic 9, let us drill down into a more detailed overview.

2. Implicitly Typed L ocal Variables

In an implicitly typed local-variable declaration, the type of the local variable is inferred from the initializer expression
on the right-hand side of a local declaration statement. For example, the compiler infers the types of all the following
variable declarations:

Di m Popul ati on = 31719

Di m Name = "Belize"

DimArea = 1.9

Dim Country = New Country{ .Name = "Palau", ...}

Hence they are precisely equivalent to the following, explicitly typed declarations:

Di m Popul ati on As Integer = 31719

Dim Nane As String = "Belize"

Dim Area As Float = 1.9

Dim Country As Country = New Country{ .Nane = "Pal au", ...}

Because types of local-variable declarations are inferred by default, no matter what the setting of Opti on Stri ct
is, access to such variables is always early-bound. The programmer must explicitly specify late binding in Visual Basic
9.0, by explicitly declaring variables as of type Obj ect , as follows:

Dim Country As Cbject = new Country{ .Nane = "Palau", ... }

Requiring explicit late binding prevents accidentally using late binding and, more importantly, it allows powerful ex-
tensions of late binding to new data types such as XML, as we will see below. There will be an optional project-level
switch to toggle the existing behaviour.

The loop-control variable in a For . . . Next ora For Each. .. Next statement can also be an implicitly typed
variable. When the loop-control variable is specified, as in For Dim |1 = 0 To Count, or as in For Each
Dim C In Smal | Countri es, the identifier defines a new, implicitly typed local variable, whose type is inferred
from the initializer or collection expression and is scoped to the entire loop. This use of Di mto the right of For is new
to Visual Basic 9.0, as are implicitly typed loop-control variables.

With this application of type inference, we can rewrite the loop that prints all small countries as follows:

For Each Dim Country In Snmall Countries
Consol e. Wi teLi ne(Country. Nane)
Next

The type of Count ry is inferred to be Count r y, the element type of Smal | Countri es.

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 5

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

Re-format page sizes

RenderX

formatter

Overview of Visual Basic 9.0

3. Object and Collection Initializers

In Visual Basic, the W t h statement simplifies access to multiple members of an aggregate value without specifying
the target expression multiple times. Inside the W't h statement block, a member-access expression starting with a
period is evaluated as if the period were preceded by the target expression of the W t h statement. For example, the
following statements initialize a new Count r y instance and subsequently initializes its fields to the required values:

Di m Pal au = New Country()
Wth Pal au

. Nane = "Pal au"

.Area = 458

. Popul ation = 16952
End Wth

The new Visual Basic 9.0 object initializersare an expression-based form of W t h for creating complex object instances
concisely. Using object initializers, we can capture the above two statements into a single (implicitly typed) local de-
claration, as follows:

Dim Pal au = New Country { _
. Name = "Pal au",
.Area = 458, _
. Popul ation = 16952

}

This style of object initialization from expressions is important for queries. Typically, a query looks like an object de-
claration initialized by a Sel ect clause on the right-hand side of the equals sign. Because the Sel ect clause returns
an expression, we must be able to initialize the entire object with a single expression.

As we have seen, object initializers are also convenient for creating collections of complex objects. Any collection
that supports an Add method can be initialized using a collection initializer expression. For instance, given the declar-
ation for cities as the partial class,

Partial Class City
Public Property Nane As String
Public Property Country As String
Public Property Longitude As Fl oat
Public Property Latitude As Fl oat
End C ass

we can create a Li st (OF City) of capital cities of our example countries as follows:

DmCapitals = New List(OFf Cty){ _
{ .Nanme = "Antanarivo", _
. Country = "Madagascar",
.Longitude = 47.4, _
.Lattitude = -18.6 },
{ .Nanme = "Bel nopan", _
.Country = "Belize",

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 6

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

Re-format page sizes

Overview of Visual Basic 9.0

. Longi tude = -88.5,
.Latitude = 17.1 },
{ .Nanme = "Mnaco", _
. Country = "Monaco",
.Longtitude = 7.2, _
.Latitude = 43.7 },
{ .Country = "Pal au",
.Name = "Koror", _
. Longi tude = 135,
.Latitude = 8 } _

This example also uses nested object initialers, where the constructors of the nested initializers are inferred from the
context. In this case, each nested initializer is precisely equivalent to the full form New City{...}.

4. Anonymous Types

Often, we just want to remove, or to project out, certain members of a type as the result of a query. For example, we
might want to know just the Nanme and Count r y of all tropical capital cities, using the Lat i t ude and Longi t ude
columns in the source data to identify the tropics, but projecting away those columns in the result. In Visual Basic 9.0,
we do this by creating a new object instance --without naming the type --for each city C whose latitude is in between
the tropic of Cancer and the tropic of Capricorn:

Const Tropi cOf Cancer = 23.5
Const Tropi cOf Capricorn = -23.5

Dim Tropi cal = Select New{ .Name = City.Name, .Country = City.Country }
FromCity In Capitals _
VWhere Tropi cOf Cancer =< City. Latitude _
AndAl so City. Latitude <= Tropi cOf Capricorn

The inferred type of the local variable Tr opi cal is a collection of instances of an anonymous type, that is, | Enu-
nerable(Of { Nanme As String, Country As String }). The Visual Basic compiler will create a
new, system-generated class, for example, _Nanme_As_String_Country_As_Stri ng_, whose member names
and types are inferred from the object initializer, as follows:

Class _Name_As_String_Country_As_String_
Public Property Nane As String
Public Property Country As String
Public Default Property Item(lndex As Integer) As Object

End C ass

Within the same program, the compiler will merge identical anonymous types. Two anonymous object initializers that
specify a sequence of properties of the same names and types in the same order will produce instances of the same
anonymous type. Externally, Visual Basic-generated anonymous types are erased to Obj ect, which allows the
compiler to uniformly pass anonymous types as arguments and results of functions. For use within Visual Basic code,
the compiler decorates the generated class with special custom attributes to remember that the type

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 7
RenderX

formatter

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

Re-format page sizes

RenderX

formatter

Overview of Visual Basic 9.0

_Name_As_String_Country_As_String_ actually represents the anonymous type{ Nane As Stri ng,
Country As String }.

Because anonymous types are typically used to project members of an existing type, Visual Basic 9.0 allows the
shorthand projection notation New { City. Name, City. Country } to abbreviate the long-form New {
.Nanme = City.Nane, .Country = City.Country }.When used in the result expression of a query
comprehension, we can abbreviate projection initializers even further, as follows:

Dim Tropical = Select City.Name, City. Country _
FromCity In Capitals _
VWhere Tropi cOf Cancer =< City. Latitude _
AndAl so City. Latitude >= Tropi cOf Capricorn

Note that both of these abbreviated forms are identical in meaning to the long form above.

5. Deep XML Support

XLing is a new, in-memory XML programming API designed specifically to leverage the latest .NET Framework
capabilities such as the Language-Integrated Query framework. Just as query comprehensions add familiar, convenient
syntax over the underlying standard .NET Framework query operators, Visual Basic 9.0 provides deep support for
XLing through XML literals and late binding over XML.

To illustrate XML literals, let us query over the essentially flat relational data sources Count ri es and Capital s
to construct a hierarchical XML model that nests the capital of each country as a child element and calculates the
population density as an attribute.

To find the capital for a given country, we do a join on the name-member of each country with the country-member
of each city. Given a country and its capital, we can then easily construct the XML fragment by filling in embedded
expression holes with computed values. We would write a "hole™ for a name attribute with parentheses, as in
Nane=(Count ry. Name), and a "hole" for a child element with special angle-bracket syntax borrowed from
ASP.NET, as in <Name><% Ci ty. Nane %</ Name>. Here is our query that combines XML literals and query
comprehensions:

Dim CountriesWthCapital As XEl enment = _
<Countri es>
<% Sel ect <Country Nane=(Country. Nane)
Densi t y=(Count ry. Popul ati on/ Country. Ar ea) >
<Capi tal >
<Name><% City. Nane %</ Nane>
<Longi tude><% City. Longi tude %</Longtitude>
<Latitude><% City.Latitude %</Latitude>
</ Capi tal >
</ Country> _
From Country In Countries, Cty In Capitals _
Where Country.Nane = City. Country %
</ Countri es>

Note that the type XElI enment could be omitted from the declaration, in which case it will be inferred, just like any
other local declaration. We leave the explicit type in for this example, to make a point below.

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 8

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

Re-format page sizes

Overview of Visual Basic 9.0

In this declaration, we want the result of the Sel ect query to be substituted inside the <Count r i es> element. Thus,
the Sel ect query is the content of the first "hole," demarcated by the familiar ASP.NET style tags <% and % inside
<Count ri es>. Because the result of a Sel ect query is an expression, and XML literals are expressions, it is nat-
ural, then, to nest another XML literal in the Sel ect itself. This nested literal itself contains nested attribute "holes"
for Count ry. Nane and the computed population density ratio Count ry. Popul ati on/ Country. Ar ea, and
nested element "holes" for the name and coordinates of the capital city.

When compiled and run, the above query will return the following XML document (reformatted slightly to save space):

<Countri es>
<Country Nane="Pal au" Density="0.037117903930131008" >
<Capi tal >
<Name>Kor or </ Nane><Longi t ude>135</ Longi t ude><Lat i t ude>8</ Lat i t ude>
</ Capi t al >
</ Country>
<Country Nane="Mnaco" Density="16694.21052631579" >
<Capi tal >
<Narme>Monaco</ Name><Longi t ude>7. 2</ Longi t ude><Lat i t ude>3. 7</ Lati t ude>
</ Capi t al >
</ Country>
<Country Nane="Belize" Density="9.5512195121951216">
<Capi tal >
<Name>Bel nopan</ Name><Longi t ude>- 88. 5</ Longi t ude><Lat i t ude>17. 1</ Lat i t ude>

</ Capi t al >
</ Country>
<Country Nane="Madagascar" Density="23.287181452711909" >
<Capi tal >
<Nane>Ant ananar i vo</ Nane>
<Longi t ude>47. 4</ Longi t ude><Lat i t ude>- 18. 6</ Lati t ude>
</ Capi t al >
</ Country>
</ Countries>

Visual Basic 9.0 compiles XML literals into normal Syst em Xmi . XLi nq objects, ensuring full interoperability
between Visual Basic and other languages that use XLing. For our example query, the code produced by the compiler
(if we could see it) would be:

Dim CountriesWthCapital As XEl ement = _
New XEl ement (" Countries", _
Sel ect New XEl enent (" Country",
New XAttribute("Nane", Country.Nane), _
New XAttribute("Density", Country.Popul ation/ Country. Area),
New XEl ement ("Capital ", _
New XEl ement (" Name", City.Nane), _
New XEl enent (" Longi tude", City.Longitude),
New XEl ement ("Latitude", City.Latitude)))
From Country In Countries, City In Capitals _
Where Country. Nane = City. Country)

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 9
RenderX

formatter

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

Re-format page sizes

RenderX

formatter

Overview of Visual Basic 9.0

Besides constructing XML, Visual Basic 9.0 also simplifies accessing XML structures via late binding over XML;
that is, identifiers in Visual Basic code are bound at run time to corresponding XML attributes and elements. For example,
we can print out the population density of all example countries as follows:

» Use the child axisexpression Count ri esW t hCapi t al . Count ry togetall " Count ry" elements from the
Countri esWthCapital XML structure;

» Use the attributeaxisexpression Count ry. @ensi t y togetthe" Densi t y" attribute of the Count r y element;

» Use the descendants axisexpression Count ry. . . Lat i t ude --written literally as three dots in the source code-
-togetall "Latitude" children of the Count ry element, no matter how deeply in the hierarchy they occur;
and

* Use the extensionindexer on | Enunrer abl e(OF T) to select the first element of the resulting sequence.

If we put this all together, the code looks like this:

For Each Dim Country In CountriesWthCapital.Country
Consol e. WitelLine("Density = "+ Country. @ensity)
Consol e. WitelLine("Latitude = "+ Country...Latitude(0))

Next

The compiler knows to use late binding over normal objects when the target expression of a declaration, assignment,
or initialization is of type (bj ect rather than of some more specific type. Likewise, the compiler knows to use late
binding over XML when the target expression is of type, or collection of, XEl enrent , XDocunent ,or XAt t ri but e.

As aresult of late binding over XML, the compiler translates as follows:

» The child-axis expression Count ri esW t hCapi t al . Count ry translates into the raw XLing call Coun-
triesWthCapital.El ements("Country"), which returns the collection of all child elements named
"Count ry" of the Count ry element;

» The attribute axis expression Country. @ensi ty translates into Country. Attri bute("Density"),
which returns the single child attribute named " Densi t y" of Count ry; and

» Thedescendant axis expression Count ry. . . Lat i t ude(0) translates into acombination of El enent At (Coun-
try. Descendant s(Lat i tude), 0), which returns the collection of all elements named at any depth below
Country.

6. Query Comprehensions

Query comprehensions provide a language integrated syntax for queries that is very similar to SQL, but adopted to fit
well with the look and feel of Visual Basic on the one hand, and on the other hand to integrate smoothly with the new
.NET language integrated query framework.

Those familiar with the implementation of SQL will recognize, in the underlying .NET Framework sequence operators,
many of the compositional relational-algebra operators such as projection, selection, cross-product, grouping, and
sorting that represent query plans inside the query processor.

Because the semantics of query comprehensions are defined by translating them into sequence operators, the underlying
operators are bound to whatever sequence operators are in scope. This implies that by importing a particular implement-
ation, the query-comprehension syntax can effectively be re-bound by the user. In particular, query comprehensions
can be re-bound to a sequence-operators implementation that uses the DLinq infrastructure, or a local query optimizer

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 10

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

Re-format page sizes

RenderX

formatter

Overview of Visual Basic 9.0

that attempts to distribute the execution of the query over several local or remote data sources. This rebinding of the
underlying sequence operators is similar in spirit to the classic COM provider model, whereby different implementations
of the same interface can support a great variety of operational and deployment choices without modifying the
overlying application code.

The basic Sel ect. .. From .. Were... comprehension filters out all values that satisfy the predicate in the
Wher e clause. One of our very first examples showed how to find all countries with fewer than a million inhabitants:

Dim Smal | Countries = _
Sel ect Country _
From Country In Countries _
Where Country. Popul ati on < 1000000

Inside a sequence operator, the identifier | t is bound to the current "row". Like Me, members of | t are automatically
in-scope. The notion of | t corresponds to XQuery's context item "." and it can be used like "*" in SQL. For example,
we can return the collection of all countries with their capitals by using the following query:

Dim CountriesWthCapital = _
Select It _
From Country In Countries, Cty In Capitals _
Where Country.Nane = City. Country

The inferred type for this local declaration is | Enuner abl e(Of { Country As Country, City As City
}).

Using the Or der By clause, we can sort the results of queries according to any number of sort keys. For example,
the following query returns a list of the names of all countries, sorted by their longtitude in ascending order and by
their population in descending order:

Dim Sorted = _
Sel ect Country. Nane _
From Country In Countries, Cty In Capitals _
Where Country. Nane = City. Country
Order By City.Longtitude Asc, Country. Popul ati on Desc

Aggregate operators such as M n, Max, Count , Avg, Sum... operate on collections and "aggregate" them to single
values. We can count the number of small countries using the following query:

DmN As Integer = _
Sel ect Count (Country) _
From Country In Countries _
VWhere Country. Popul ati on < 1000000

Like SQL, we provide special syntax for aggregates, which is extremely convenient for "tupling" multiple aggregate
operations. For example, to count the number of small countries and compute their average density with one statement,
we can write

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 11

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

Re-format page sizes

Overview of Visual Basic 9.0

DmR As { Total As Integer, Density As Double } = _
Sel ect New { .Total = Count(Country), _
.Density = Avg(Country. Popul ati on/ Country. Area) } _
From Country In Countries _
Where Country. Popul ati on < 1000000

This form of aggregation is shorthand for applying a compiler-generated aggregate function over the result of the
normal result set without any aggregation.

Aggregate functions appear most often in combination with partitioning the source collection. For example, we can
group all countries by whether they are tropical and then aggregate the count of each group. To do so, we introduce
the Gr oup By clause. The helper function | sTr opi cal encapsulates the test whether a Count ry has a tropical
climate:

Partial Class Country
Function IsTropical () As Bool ean
Return Tropi cOf Cancer =< Me. Latitude _
AndAl so Me. Latitude >= Tropi cOf Capri corn
End Function
End d ass

Given this helper function, we use exactly the same aggregation as above, but first partition the input collection of
Count ry and Capi t al pairs into groups for which Count ry. | sTr opi cal is the same. In this case there are
two such groups: one that contains the tropical countries Palau, Belize, and Madagascar; and another that contains the
nontropical country Monaco.

Key Country City
Country.lsTropical () = Palau Koror
True

Country.|IsTropical () = Belize Belmopan
True

Country.lsTropical () = Madagascar Antanarivo
True

Country.lsTropical () = Monaco Monaco

Fal se

Then, we aggregate the values in these groups by computing the total count and average density. The result type is
now a collection of pairs of Total As I nteger and Density As Doubl e:

Di m CountriesByC i mte _
As | Enunerabl e(OF Total As Integer, Density As Double }) =
Select New { .Total = Count(Country), _
.Density = Avg(Country. Popul ati on/ Country. Area) } _
From Country In Countries, City In Capitals _
Where Country.Name = City. Country
G oup By Country.IsTropical ()

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 12
RenderX

formatter

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

Re-format page sizes

RenderX

formatter

Overview of Visual Basic 9.0

The above query hides considerable complexity inasmuch as the result of the G oup By clause is actually a collection
of grouping values of type | Enumrer abl e(Of Groupi ng(Of { Bool ean, { Country As Country,
City As City })),much like the table above. Each such Gr oupi ng item contains a Key member derived from
the key-extraction expression Country. | sTropi cal () and a Group that contains the unique collection of
countries and cities for which the key extraction expression has the same value. The Visual Basic compiler synthesizes
the user-defined aggregate function, that given such a grouping, calculates the required result by aggregating over each
partition.

Note that in the previous example each G- oup contains both the Count r y and Capi t al , whereas we only need the
Count ry to compute the final result of the query. The G oup By clause allows for a preselection of the groups. For
example, we can partition the names of all countries by their hemisphere using the following comprehension:

Di m ByHem sphere As | Enunerabl e(Of G oupi ng(Of Bool ean, String)) =
Select It _
From Country In Countries, City In Capitals _
Where Country.Nane = City. Country
Group Country.Nane By City.Latitude >= 0

This would return the collection { New Grouping { .Key = False, .Goup = { "Mudagascar",
"Belize" }}, New Gouping { .Key = True, .Goup = { "Palau" }}.

Query comprehensions in Visual Basic 9.0 are fully compositional, meaning that query comprehensions can be arbit-
rarily nested, restricted only by the static-typing rules. Compositionality makes it easy to understand a large query by
simply understanding each individual subexpression in isolation. Compositionality also makes it easy to define the
semantics and typing rules of the language clearly. Compositionality, as a design principle, is rather different from the
principles that underlie the design of SQL. The SQL language is not fully compositional, and rather has an ad-hoc
design with many special cases that grew over time as experience with databases accumulated in the community. Due
to the lack of full compositionality, however, it is not possible, in general, to understand a complex SQL query by un-
derstanding the individual pieces.

One of the reasons that SQL lacks compositionality is that the underlying relational data model is itself not composi-
tional. For instance, tables may not contain subtables; in other words, all tables must be flat. As a result, instead of
breaking up complex expressions into smaller units, SQL programmers write monolithic expressions whose results
are flat tables, fitting to the SQL data model. To quote Jim Gray, "anything in computer science that is not recursive
is no good." Because Visual Basic is based on the CLR type system, there are no restrictions on what types can appear
as components of other types. Aside from static typing rules, there are no restrictions on the kind of expressions that
can appear as components of other expressions. As a result, not only rows, objects, and XML, but also active directory,
files, registry entries, and so on, are all first-class citizens in query sources and query results.

7. Extension M ethods

Much of the underlying power of the .NET Framework standard query infrastructure comes from extension methods.
In fact the compiler translates all query comprehensions directly into the standard query operator extension methods
defined by the namespace that is in scope. Extension methods are shared methods marked with custom attributes that
allow them to be invoked through instance-method syntax. In effect, extension methods extend existing types and
constructed types with additional methods.

Because extension methods are intended mostly for library designers, Visual Basic does not offer direct language
syntax support for declaring them. Instead, authors directly attach the required custom attributes on modules and
members to mark them as extension methods. The following example defines an extension method Count on arbitrary
collections:

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 13

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

Re-format page sizes

RenderX

formatter

Overview of Visual Basic 9.0

<System Runti nme. Conpi | er Servi ces. Ext ensi on> _
Modul e MyExt ensi ons
<System Runti nme. Conpi | er Servi ces. Ext ensi on> _
Function Count (OF T)([Me] As I|Enunerable(OF T)) As I|nteger
For Each DDm It In [Me]
Count += 1
Next
End Function
End Modul e

Recall that the square-bracket syntax is a keyword escape, permitting Me to be used as the name of an ordinary variable.
Because the extension method is a shared method that will simulate an instance method, it is convenient to use the
identifier Me as the name of the input, as we would in an actual instance method, but it must be escaped with brackets
since it is a keyword, and therefore not really allowed in a shared method.

Extension methods are just regular shared methods, hence we can invoke the Count function as we would invoke any
other shared function in Visual Basic, by just supplying explicitly the instance collection on which to operate:

Dim Tot al Smal | Countries = _
MyExt ensi ons. Count (Sel ect Country _
From Country In Countries _
VWhere Country. Popul ati on < 1000000)

Extension methods come into scope through the normal | npor t s statement. These extension methods will then appear
as additional methods on the types given by their first parameter.

| mports MyEXt ensi ons

Dim Total Snal | Countries = _
(Sel ect Country _
From Country In Countries _
Where Country. Popul ati on < 1000000) . Count ()

Extension methods have lower precedence than regular instance methods; if the normal processing of an invocation
expression finds no applicable instance methods, the compiler tries to interpret the invocation as an extension-method
invocation.

The most natural way to write this query, however, is to use aggregate syntax, as we have seen before:

Dim Total Snal | Countries = _
Sel ect Count (Country) _
From Country In Countries _
Where Country. Popul ati on < 1000000

8. Nested Functions

Many of the standard query operators such as Wher e, Sel ect , Sel ect Many, etc. are defined as extension methods
that take delegates of type Func(Of S, T) as arguments. In order for the compiler to translate comprehensions into

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 14

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

Re-format page sizes

RenderX

formatter

Overview of Visual Basic 9.0

the underlying query operators, or in order for Visual Basic programmers to call query operators directly, there is a
need to create delegates easily. In particular, we need to be able to create so-called closures, delegates that capture
their surrounding context. The Visual Basic mechanism for creating closures is through nested local function and
subroutine declarations.

To show the use of nested function, we will call into the raw underlying query operators as defined in the Sys-
t em Quer y namespace. One of the extension methods is the TakeWhi | e function that yields elements from a sequence
while a test is true and then skips the remainder of the sequence.

<Ext ensi on> _
Shared Function TakeWile(OF T) _
(source As | Enunerable(OF T), Predicate As Func(Of T, Boolean)) _
As | Enuner abl e(Of T)

The Or der ByDescendi ng operator sorts its argument collection in descending order according to the proved sort
key:

<Ext ensi on> _
Shared Function O derByDescending (T, K As | Conparabl e(Of K)) _
(Source As | Enunerable(OF T), KeySelector As Func(Of T, K)) _
As OrderedSequence(Or T)

An alternative way of finding all small countries is by first sorting them by population, and then using TakeWhi | e
to pick out all the countries that have less than a million inhabitants.

Functi on Popul ati on(Country As Country) As I|nteger
Return Country. Popul ati on
End Function

Function LessThanAM I lion(Country As Country) As Bool ean
Return Country. Popul ati on < 1000000
End Function

Dim Smal | Countries = _
Countries. Order By(AddresOf Popul ation) _
. TakeWi | e(AddresOf LessThanAM | | i on)

Though it is not required for query comprehensions, Visual Basic may support direct syntax for anonymous functions
and subroutines (so called "lambda expressions'), which would be translated by the compiler to local function declar-
ations.

9. Nullable Types

Relational databases present semantics for nullable values that are often inconsistent with ordinary programming lan-
guages and often unfamiliar to programmers. In data-intensive applications, it is critical for programs to handle these
semantics clearly and correctly. Recognizing this necessity, in "Whidbey" the CLR has added run-time support for
nullability using the generictype Nul | abl e(OF T As Struct) . Using this type we can declare nullable versions
of value types such as | nt eger, Bool ean, Dat e, etc. For reasons that will become apparent, the Visual Basic
syntax for nullable types is T?.

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 15

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

Re-format page sizes

RenderX

formatter

Overview of Visual Basic 9.0

For example, because not all countries are independent, we can add a new member to the class Count r y that represents
their independence date, if applicable:

Partial C ass Country
Public Property |Independence As Date?
End d ass

Just as with array types, we can also affix the nullable modifier on the property name, as in the following declaration:

Partial Class Country
Public Property Independence? As Date
End d ass

The independence date for Palau is #10/ 1/ 1994#, but the British Virgin Islands are a dependent territory of the
United Kingdom, and hence its independence date is Not hi ng.

Dim Palau = _
New Country { _
. Nane = "Pal au",
. Area = 458,

. Popul ati on =_16952, _
. I ndependence = #10/ 1/ 1994# }

Di m Virginlslands =
New Country { _
.Nane = "Virgin Islands",
.Area = 150, _
. Popul ati on= 13195, _
. I ndependence = Not hi ng }

Visual Basic 9.0 will support three-valued logic and null propagation arithmetic on nullable values, which means that
if one of the operands of an arithmetic, comparison, logical or bitwise, shift, string, or type operation is Not hi ng, the
result will be Not hi ng. If both operands are proper values, the operation is performed on the underlying values of
the operands and the result is converted to nullable.

Because both Pal au. | ndependence and Vi r gi nl sl ands. | ndependence have type Dat e?, the compiler
will use null-propagating arithmetic for the substractions below, and hence the inferred type for the local declaration
PLengt h and VI Lengt h will both be Ti neSpan?.

Di m PLengt h = #8/ 24/ 2005# - Pal au. | ndependence REM 3980. 00: 00: 00

The value of PLengt h is3980. 00: 00: 00 because neither of the operands is Not hi ng. On the other hand, because
the value of Vi r gi nl sl ands. | ndependence is Not hi ng, the result is again of type Ti neSpan?, but the value
of VI Lengt h will be Not hi ng because of null-propagation.

Di m VI Lengt h = #8/ 24/ 2005# - Virginlslands. | ndependence REM Not hi ng

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 16

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

Re-format page sizes

RenderX

formatter

Overview of Visual Basic 9.0

As in SQL, comparison operators will do null propagation, and logical operators will use three-valued logic. In | f
and Whi | e statements, Not hi ng is interpreted as Fal se; hence in the following code snippet, the El se branch is
taken:

If VlILength & t; Ti neSpan. FronDays(10000)
El se

End 17

Note that under three-valued logic, the equality checks X = Not hi ng, and Not hi ng = X always evaluates to
Not hi ng; in order to check if X is Not hi ng, we should use the two-valued logic comparison X | s Not hi ng or
Not hing Is X

The run time treats nullable values specially when boxing and unboxing to and from Obj ect . When boxing a nullable
value that represents Not hi ng (that is, the HasVal ue property is Fal se) , that value is boxed into a null reference.
When boxing a proper value (that is, the HasVal ue property is Tr ue) , the underlying value is first unwrapped and
then boxed. Because of this, no object on the heap has dynamic type Nul | abl e(OF T) ; all such apparent types are
rather just T. Dually, we can unbox values from Obj ect into either T, orinto Nul | abl e(Of T) . However, the
consequence of this is that late-binding cannot dynamically decide wether to use two-valued or three-valued logic. For
example, when we do an early-bound addition of two numbers, one of which is Not hi ng, null propagation is used,
and the result is Not hi ng:

Dim A As |nteger?
Dm B As | nteger?
Dim C As | nteger?

Not hi ng
4711
A+B REM C = Not hi ng

However, when using late-bound addition on the same two values, the result will be 4711, because the late binding
will use two-valued logic based on the fact that the dynamic type of both Aand Bis | nt eger, not| nt eger ?. Hence
Not hi ng is interpreted as O:

Dim X As (bj ect
DmY As bject
Dim Z As bj ect

A
B
X+Y REM Z = 4711

In order to ensure the correct semantics, we need to direct the compiler to use the null-propagating overload

Qperator +(x As (bject?, y As bject?) As (bject?

by converting either of the operands to a nullable type using the ? operator:

Dim X As (bj ect
DmY As bject
DmZ As Object? = X?+Y REM Z = Not hi ng

A
B

Note that this implies that we must be able to create T? for any type T. The underlying CLR Nul | abl e(Of T As
Struct) type constrains the argument type to non-nullable structures only. The Visual Basic compiler erases T? to

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 17

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

Re-format page sizes

RenderX

formatter

Overview of Visual Basic 9.0

T where T is not a non-nullable value type, and to Nul | abl e(Of T) when T is a non-nullable value type. The
compiler keeps around enough internal metadata to remember that within the Visual Basic program, the static type in
both cases is T?.

10. Relaxed Delegates

When creating a delegate using Addr essCOf or Handl es in Visual Basic 8.0, one of the methods targeted for binding
to the delegate identifier must exactly match the signature of the delegate's type. In the example below, the signature
of the Ond i ck subroutine must exactly match the signature of the event handler delegate Del egate Sub
Event Handl er (sender As Object, e As Event Args), which is declared behind the scenes in the
But t on type:

Dim WthEvents B As New Button()

Sub Ondick(sender As Object, e As Event Args) Handl es B. Cick
MessageBox. Show("Hel l o Worl d from' + B. Text)
End Sub

However, when invoking non-delegate functions and subroutines, Visual Basic does not require the actual arguments
to exactly match one of the methods we are trying to invoke. As the following fragment shows, we can actually invoke
the Ond i ck subroutine using an actual argument of type But t on and of type MouseEvent Ar gs, which are subtypes
of the formal parameters Cbj ect and Event Ar gs, respectively:

Dim M As New MouseEvent Args(MuseButtons. Left, 2, 47, 11,0)
Ondick(B, M

Conversely, suppose that we could define a subroutine Rel axedOnCl i ck that takes two Obj ect parameters, and
then we are allowed to call it with actual arguments of type Gbj ect and Event Ar gs:

Sub Rel axedOnd i ck(sender As (bject, e As hject) Handles B.dick
MessageBox. Show("Hel o World froni' + B. Text))

End Sub

DimE As EventArgs = M

DmS As (bject = B

Rel axedOnd i ck(B, E)

In Visual Basic 9.0, binding to delegates is relaxed to be consistent with method invocation. That is, if it is possible
to invoke a function or subroutine with actual arguments that exactly match the formal-parameter and return types of
a delegate, we can bind that function or subroutine to the delegate. In other words, delegate binding and definition will
follow the same overload-resolution logic that method invocation follows.

This implies that in Visual Basic 9.0 we can now bind a subroutine Rel axedOnC i ck that takes two Cbj ect
parameters to the Cl i ck event of a But t on:

Sub Rel axedOnd i ck(sender As Cbject, e As hject) Handles B.dick
MessageBox. Show(("Hel l o World fronm + B. Text)
End Sub

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 18

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

Re-format page sizes

RenderX

formatter

Overview of Visual Basic 9.0

The two arguments to the event handler, sender and Event Ar gs, very rarely matter. Instead, the handler accesses
the state of the control on which the event is registered directly and ignore its two arguments. To support this common
case, delegates can be relaxed to take no arguments, if no ambiguities result. In other words, we can simply write the
following:

Sub Rel axedOnd i ck Handl es B. dick
MessageBox. Show("Hel l o Worl d from' + B. Text)
End Sub

It is understood that delegate relaxation also applies when constructing delegates using an Addr essOf or delegate
creation expression, even when the method group is a late-bound call:

Dim F As Event Handl er = AddressO Rel axedOnd i ck
Dim G As New Event Handl er (AddressOF B. d i ck)

11. Dynamic I nterfaces (or Strong " Duck Typing")

In purely statically typed languages such as C# or Java or Visual Basic (with Opti on Strict On), members must
exist at compile time on the type of the target expression. For example, the second assignment below causes a compile-
time error because class Count r y does not have an | nf | at i on member:

Dim Pal au As Country = Countries(0)
DimInflation = Country.Inflation

However, in many situations, it is necessary to access a member even though the type of the target type is unknown
at compile-time; this is a common scenario extension fields customized during application deployment. With Opt i on
Strict Of,Visual Basic allows late-bound member access on targets of type Cbj ect . While powerful and extremely
flexible, late-binding comes with a cost. In particular, the user does not benefit from Intellisense, type inference, and
compile-time checking and needs casts or explicit types to move back to the early-bound world.

Even when making late-bound call, it is common to assume that the value adheres to a certain "interface." As long as
the object satisfies that interface, the call will succeed. The dynamic-language community calls this "Duck Typing":
if it walks like a duck and talks like a duck, then it is a duck. To illustrate the idea of Duck Typing, the example below
returns contact information from a School ora Ci ti zen, both of which have a Nane property of type Stri ng,
and a Phone property of type | nt eger .

Function Contactlnfo(country As Country, Address As String) As Object
For Each Di m school In Country. School s
I f school . Address = addr Then
Return New { Nane := school, Princi pal Nane, school . Phone }
End |f
Next

For Each Dimcitizen in Country.Ctizens
If citizen. Address = addr Then
Return citizen
End |f

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 19

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

Re-format page sizes

RenderX

formatter

Overview of Visual Basic 9.0

Next
End Functi on

When attempting to access the Narre property of the result type using late-binding, there is a static assumption that
the value returned by Cont act | nf o has a Narme member of type St r i ng. Using the new feature of dynamic inter-
faces, we this assumption can be made explicit. A target whose static type is a dynamic interface is always accessed
using late-binding, but the member access is statically typed. This means that the user benefits from full Intellisense
and type inference, and do not have to do any casting or explicit typing:

Dynanmic Interface Contact
Property Nanme As String
Property Address As I|nteger

End Interface

Di m Contact As Contact = Contactlnfo(country, "123 Main Street")
Di m Name = contact. Name REM Inferred As String.

12. Dynamic | dentifiers

Late binding allows programmers to call methods on receiver objects whose type is unknown at compile-time. Dynamic
interfaces leverage the fact that programmers assume that statically they know the name and signatures of the members
they expect in a late-bound invocation. However, in certain truly dynamic scenarios, we might not even know the type
of the receiver nor the name of the member we want to invoke. Dynamic identifiers allow for extremely late-bound
calls where the identifier and the argument list of an invocation expression or the type and the argument list of a con-
structor call are computed dynamically.

An example of using dynamic identifiers is in test-driven development where you specify test information in an XML
file and execute each test dynamically. Suppose we want to test the | sTr opi cal function that we defined earlier:

Partial Cass Country
Function |IsTropical () As Bool ean
Return Tropi cOf Cancer =< Me. Latitude _
AndAl so Me. Latitude >= Tropi cOf Capricorn
End Functi on
End d ass

To do so, we first create an XML file that contains a number of tests that specify the method to be called and the ex-
pected result, the constructor for the receiver and the arguments for the actual call:

<t est s>
<test method="IsTropical" result="Fal se">
<recei ver classname="Country">
<ar gunent >Monaco</ ar gunent >
</receiver>
</test>
<test nmethod="IsTropical" result="True">
<recei ver classname="Country">
<ar gunment >Bel i ze</ ar gunent >

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 20

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

Re-format page sizes

RenderX

formatter

Overview of Visual Basic 9.0

</receiver>
</test>
</tests>

In other words, the XML file above encodes the following two tests

Debug. Assert (New Count ry("Mnaco") .| sTropical ()
Debug. Assert (New Country("Belize").IlsTropical ()

Fal se)
True)

Our task is to interpret the XML file such that it runs this code. Using type inference, extension methods, query com-
prehensions, dynamic identifiers and late-binding over XML it is very easy to write what is essentially a Visual Basic
interpreter in Visual Basic:

Sub RunTests (Tests As XEl enent)
For Each Dim Test In Tests
REM dynami cal |y create receiver object
Di m Construct or Type = Type. Get Type(Test. recei ver. @l assnane)
Di m ConstructorArgs = _
(Sel ect a.Value() Froma In Test.receiver.argunment). ToArray()
Di m I nstance = New(Const ruct or Type) (Construct or Ar gs)
REM dynani cal |y call menber
Di m Met hodNanme = CStr(test. @et hod)
Di m Met hodArgs = _
(Sel ect a.Value() Froma In test.receiver.argument). ToArray()
Dim Result = Receiver. (Mt hod) (Met hodAr gs)
REM check for expected result
Debug. Assert (Result = test. @esult)
Next
End Sub

The dynamic constructor call expression New(Const r uct or Type) (Const r uct or Ar gs) dynamically computes
calls the constructor for the type Const r uct or Type computed from the class attribute as specified in the receiver
element of the test and the actual arguments ConstructorArgs as given by the argument child elements of the receiver
element of the test. Under the covers, it calls the Act i vat or . Cr eat el nst ance(Type, Obj ect ()) method.
Similarly, the dynamic invocation expression | nst ance. (Met hodNane) (Met hodAr gs) dynamically calls the
method Met hodNane on the receiver | nst ance, passing Met hodAr gs as the actual arguments. In this case the
method name is taken from the method attribute of the test and the actual arguments are taken from the argument
children of the test. Under the covers, as in any late-bound situation, the normal NewLat eBi ndi ng. Lat eCal | is
used. Finally, the computed result is compared to the expected result as specified by the result attribute of the test.

The corresponding code in a language such as C# that does not support dynamism at all is at least an order of magnitude
larger and requires a lot of mind-numbing reflection plumbing code. However, even in many dynamic languages such
as Python, PHP, or VB 8, it is not as easy to call constructor and methods where the type repectively the method name
is computed at runtime. For example, in VB 8 the equivalent code would have been about five times as large and be
something incomprehensible like:

Sub RunTests (Tests As XEl enent)
For Each Test As XEl enment In Tests.Elenents("test")
REM dynami cal |y create receiver object

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 21

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

Re-format page sizes

Overview of Visual Basic 9.0

End Sub

Di m Construct or Type As System Type = _
Type. Get Type(Test. El enent ("receiver"). Attribute("receiver"))
Di m Construct or ArgsLi st As New List(OF Object)
For Each Parameter As XElement In _
XEl ement Sequence. El ement s(Test . El enent ("receiver"), "paraneter")
Construct or ArgsLi st. Add(Par anet er. Val ue())
Next
Di m Constructor Args = ConstructorArgsLi st. ToArray()
Dim | nstance = Activator. Createl nstance _
(Const ruct or Type, ConstructorArgs)
REM dynani cal |y call menber
Di m Met hodNane As String = Test.Attribute("receiver")
Di m Met hodAr gsLi st As New Li st (OF Object)
For Each Met hodArg As XElement In _
test. El ement s(" paraneter")
Met hodAr gsLi st . Add(Met hodAr g. Val ue())
Next
Di m Met hodArgs As Obj ect () = Met hodArgsLi st. ToArray()
REM cannot directly use | ate binding
Di m Result = NewlLat eBi ndi ng. LateCal | _
(I nstance, Not hing, MethodNane, MethodArgs,
Not hi ng, Fal se, Fal se)
REM check for expected result
Debug. Assert (Result = test. @esult)
Next

It is remarkable how lifting the arbitrary restriction on computing types and method names unleashes the full power
of reflexive metaprogramming that is typically only found in languages such as SmallTalk, directly to the Visual Basic
user. This makes Visual Basic 9.0 the language of choice for modern Agile and test-driven development methodologies.

13. Conclusion

Visual Basic 9.0 introduces a variety of new features. In this document, we have presented these features in a series
of linked examples, but the underlying themes deserve emphasis as well:

Relational, object, and XML data. Visual Basic 9.0 unifies access to data independently of its source in relational
databases, XML documents, or arbitrary object graphs, however persisted or stored in memory. The unification
consists in styles, techniques, tools, and programming patterns. The especially flexible syntax of Visual Basic
makes it easy to add extensions like XML literals and SQL-like query comprehensions deeply into the language.
This greatly reduces the "surface area™ of the new .NET Language Integrated Query APIs, increases the discover-
ability of data-access features through IntelliSense and Smart Tags, and vastly improves debugging by lifting foreign
syntaxes out of string data into the host language. In the future, we intend to increase the consistency of XML data
even further by leveraging XSD schemas.

Increased dynamismwith all the benefits of static typing. The benefits of static typing are well known: identifying
bugs at compile time rather than run time, high performance through early-bound access, clarity through explicitness
in source code, and so on. However, sometimes, dynamic typing makes code shorter, clearer, and more flexible.
If a language does not directly support dynamic typing, when programmers need it they must implement bits and
pieces of dynamic structure through reflection, dictionaries, dispatch tables, and other techniques. This opens up
opportunities for bugs and raises maintenance costs. By supporting static typing where possible, and dynamic
typing where needed, Visual Basic delivers the best of both worlds to programmers.

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 22

RenderX

formatter

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

Re-format page sizes

RenderX

formatter

Overview of Visual Basic 9.0

» Reduced cognitive load on programmers. Features such as type inference, object initializers, and relaxed delegates
greatly reduce code redundancy and the number of exceptions to the rules that programmers need to learn and re-
member or look up, with no impact on performance. Features such as dynamic interfaces support IntelliSense even
in the case of late-binding, greatly improving discoverability over advanced features.

Although it may seem that the Visual Basic 9.0 list of new features is long, we hope the above themes will convince
you that it is coherent, timely, and dedicated to making Visual Basic the world's finest programming system. We hope
your imagination will be stimulated, too, and that you will join us in realizing that this is really just the beginning of
even greater things to come.

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 23

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

Re-format page sizes

Overview of Visual Basic 9.0

Biography

Erik Meijer
Architect
Microsoft Corporation [http://www.microsoft.com]
Redmond
Washington
United States of America
http://www.research.microsoft.com/~emeijer/ [http://www.research.microsoft.com/~emeijer]

Erik Meijer is an architect in the WebData XML group at Microsoft where he works with the C# and Visual Basic
teams on language and type-systems for data integration in programming languages. Prior to joining Microsoft he
was an associate professor at Utrecht University and adjunct professor at the Oregon Graduate Institute. Erik is
one of the designers of the Mondrian scripting language, standard functional programming language Haskell98,
and Comega.

Amanda Silver
Program Manager
Microsoft Corporation [http://www.microsoft.com]
Redmond
Washington
United States of America

Amanda Silver is the program manager for the Visual Basic compiler.

Paul Vick
Technical Lead
Microsoft Corporation [http://www.microsoft.com]
Redmond
Washington
United States of America

Paul Vick is the technical lead for the Visual Basic language.

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 24
RenderX

formatter

http://www.microsoft.com
http://www.research.microsoft.com/~emeijer
http://www.microsoft.com
http://www.microsoft.com
http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=247

	1. Getting Started With Visual Basic 9.0
	2. Implicitly Typed Local Variables
	3. Object and Collection Initializers
	4. Anonymous Types
	5. Deep XML Support
	6. Query Comprehensions
	7. Extension Methods
	8. Nested Functions
	9. Nullable Types
	10. Relaxed Delegates
	11. Dynamic Interfaces (or Strong "Duck Typing")
	12. Dynamic Identifiers
	13. Conclusion

