Re-format page sizes

Your schema and the industry-standard
schema

Bob DuCharme

Abstract

Using an existing industry standard schema or DTD instead of developing your own provides obvious
advantages. Only the luckiest find a perfect fit between a standard schema and their requirements;
most need to customize the schema to take full advantage of it. They'll find that some schemas are
more amenable than others to customization. Issues to consider include the modularity of a schema
and the use of easily overridden parameter entities or their schema equivalents.

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.
RenderX

formatter

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=30

Re-format page sizes

RenderX

formatter

Your schema and the industry-standard schema

Table of Contents

IO 11 oo [0 Tox 1o o PP SPPPP 3
2. Customizability and SChema LANGQUAGESuuuiiiiieeiii ettt 3
5 N P PPRPP 3
2.2, RELAX NG ..ot 5
2.3 W3BC SCNBIMA . uiiiii e e e e 6
T[T [F] o | TSP PP PPPTRR 7
o] LB 1 =T g TP 8
40 SOA PP L2 e 8
4.2, DOCBOOK . .ueii i e 9
4.3, SV G i e 9
L I N I P TSPR 10
5. Picking and EXtending @ SCREMAcoouuniiiii e 11
BB IOGIAPNY ..t e 12
XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 2

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=30

Re-format page sizes

RenderX

formatter

Your schema and the industry-standard schema

1. Introduction

It's a truism in the XML world that when you need a DTD or schema and there's a standard one in your industry, you
should use that instead of making up a new one yourself. You'll save the modeling and development work, you'll have
an easier time exchanging data with business partners, and you may even find built-in support for the standard in
software tools developed for use in that industry. Just because someone claims that their work is an industry standard,
though, doesn't make it so, and it's always worth investigating how much traction the standard has. Are your business
partners, or anyone else, really using it? Is there an active community developing with it? Are there experienced spe-
cialists who can help you with it if necessary?

How well does a specific industry standard schema meet your needs? If you're looking at a particular schema at all,
there must be some fit with your business's needs. Even if everything in that schema reflects information in your content,
your content probably has more to account for. Perhaps the value you add to your content, which may be what separates
it from your competitors' content, would best be stored as extra elements or attributes in the content, and the standard
schema doesn't have those elements and attributes. Perhaps your documents include simple workflow and versioning
data that track when you received the documents and which of your processes have been run on them. Perhaps the
extra data that you want to store is not something that you designed in-house but is instead another standard such as
the periodical publishing industry's PRISM (Publishing Requirements for Industry Standard Metadata), which is designed
to be plugged into other schemas and DTDs.

This brings up the importance of a schema's customizability relative to others. A highly customizable schema that
meets 80% of your needs may be better for you than another one that meets 90% of your needs but is set in stone.
While there' s nothing to prevent you from taking a schema and just editing it until it meets your needs, this is a bad
strategy; if you start with a copy of version 2.1 of an industry standard and then make a lot of changes, what do you
do when the standard moves to 3.0? Attempting to make all the same changes to release 3.0 will run into difficulties.
When a schema designed for sharing among multiple organizations is well-designed, it provides hooks for storing
customizations in a separate file so that those same customizations can be used with the upgraded version of the
standard with minimal trouble. The techniques for providing these hooks varies from schema language to schema
language.

2. Customizability and Schema L anguages

When you define the structure of a document type's elements, you can do it by creating building blocks that can be
redefined and then assembling those blocks to define your elements. You don't have to do it this way, but you can, and
whether a schema does this or not is one key to its adaptability. Let's review how the three major schema languages
do this, along with any extra features they offer for extensibility: DTDs, RELAX NG schemas, and W3C Schemas.

2.1. DTDs

The SGML-derived syntax of DTDs[XML], XML's original schema language, lets you define fairly arbitrary pieces
of DTDs in units called parameter entities and then plug those into DTDs where you need them. ("Entities," as opposed
to "parameter entities," are named pieces of actual XML documents, not DTDs.) Let's say we want to make the following
declaration for a purchase order more customizable:

<IELEMENT po (hame,date, item,quantity)>

We could store its content model in a parameter entity and reference that in the element declaration.

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 3

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=30

Re-format page sizes

RenderX

formatter

Your schema and the industry-standard schema

<IENTITY % po.content "name,date,item,quantity">
<IELEMENT po (%po.content;)>

A customized version of the purchase order DTD could include the file holding these declarations and then redefine
the po.content entity that is used above to define the po element's content model:

<IENTITY % po.content "name,date,item,quantity,po-id">
<IELEMENT po-id (#PCDATA)> <I-- new element to add to content model -->

Letting someone completely redefine the content model might give them too much flexibility, though. A safer practice
is to define the original content model with a reference to an empty parameter entity.

<IENTITY % po.content.cust ">
<IELEMENT po (nhame,date, item,quantity %po.content.cust;)>

Then, in the customized version of the DTD, someone can redefine the empty parameter entity to add to the content
model with no chance of any damage to the existing content model:

<IENTITY % po.content.cust *,po-id">
<IELEMENT po-id (#PCDATA)>

A similar technique lets people add attributes to the customized version of an ATTLIST declaration. The following
declares and references an empty item.att. cust parameter entity.

<IENTITY % item.att.cust ">

<IATTLIST item id 1D #REQUIRED
color NMTOKEN "‘white"
%item.att.cust;

>

A customized version of the DTD with the 1tem attribute list declaration can redeclare the item.att. cust entity
to add more attributes to the list, and this will be substituted for the %item.att.cust; entity reference instead of
the original declaration:

<IENTITY % item.att.cust "supplierCode NMTOKEN "s0000*
flavor CDATA #IMPLIED"
>

One weak point of a DTD's approach to DTD component modularity is the dependence on string substitution. If the
redeclaration of po. content. custabove had a value of "po-id" instead of ",po-id" it would cause an error, because
the comma is necessary as a delimiter between the "quantity” ending of the original po content model and the new
po-1id element being added to it. An advantage of the RELAX NG and W3C Schema languages is that their more
structural approach is architecturally more solid and therefore more scalable.

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 4

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=30

Re-format page sizes

RenderX

formatter

Your schema and the industry-standard schema

Another DTD extensibility option is the use of the keyword ANY as a content model, which allows an element to have
any well-formed content without causing a parsing error. While this is lax enough to be of little use to DTD developers,
we'll see that refinements of this ability in the RELAX NG and W3C Schema languages can provide important contri-
butions to the adaptability of a schema.

2.2. RELAX NG

The RELAX NG schema language is all about specifying patterns for allowable XML structures. A schema itself is
considered a pattern. Like the parameter entities of a DTD, RELAX NG named patterns let you define structures to
be referenced elsewhere in a schema:

<define name='"po.content'>
<interleave>
<ref name="'name' />
<ref name="'date'' />
<ref name=""item"/>
<ref name="'quantity'/>
</interleave>
</define>

<element name="'po"'>
<ref name="po.content'/>
</element>

By redefining a named pattern in a separate file, you can customize a schema without editing the schema file itself.
When a RELAX NG parser finds the same named pattern defined in more than one place, it expects to find a combine
attribute that specifies the relationship between the new version and the old one. A value of "choice™ means that an
element using that named pattern must conform to either one or the other named patterns, and a value of "interleave™
means that the new pattern is to be combined with the original one. For example, the following adds po-1id to the
po.content content model as declared above:

<define name="po.content”™ combine="interleave'>
<ref name="po-id"/>
</define>

Note that, unlike with DTDs, no special slot had to be inserted in the original definition (as with the %po.con-
tent. cust; entity reference in the DTD example) to enable the addition of the revision from elsewhere. The original
schema must still define a named pattern to allow the customization, because the customization must be able to
identify the component being customized.

A RELAX NG Schema lets you specify anyName as part of a content model. This is already an improvement over
the DTD ANY keyword, which can only be used as a complete content model itself, not combined with other names
to specify parts of a content model. The RELAX NG anyName name class offers further refinement of what it specifies
by letting you add an except child with a pattern identifying a name or names to disallow.

As an example of its use, let's look at how an entry is specified in Atom 1.0[ATOM], the recent IETF (Internet En-
gineering Task Force) version of the RSS format used to notify applications of updates to news stories, weblog entries,
and other content. The following shows the definition of this element using RELAX NG's compact syntax for brevity:

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 5

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=30

Re-format page sizes

RenderX

formatter

Your schema and the industry-standard schema

element atom:entry {
atomCommonAttributes,
(atomAuthor*>
atomCategory>
atomContent?
atomContributor*
atomld
atomLink*
atomPubl ished?
atomRights?
atomSource?
atomSummary?
atomTitle
atomUpdated
extensionElement*)

Ro R0 R0 R0 Ro RO RO RO RO RO RO Ro

}

At first | was surprised to see that the content model was not defined by a pattern that could be redefined, because the
ability to add new, application-specific children to the atom:entry element can greatly speed the adoption of this
new standard. (Keep in mind that in the entry definition above, the names atomCategory, atomContent, and
the others shown above are pattern names, not element names.) Then I looked at the definition of the extensionEle-
ment pattern that ends the entry content model:

<define name="simpleExtensionElement'>
<element>
<anyName>
<except>
<nsName ns="http://www.w3.0rg/2005/Atom"/>
</except>
</anyName>
<text/>
</element>
</define>

This lets you put an element of any name there, as long as it's not in the same namespace as Atom itself, because you
wouldn't want an entry or a feed inside of an entry. James Clark used the same technique to define an XSLT 1.0 RELAX
NG schema so that literal result elements could be added in the appropriate places in an XSLT stylesheet but that inap-
propriate XSLT elements could not go in those same places. [XSLT.RNG]

2.3. W3C Schema

A key different between the approach of W3C Schemas[XSD] and the other schema languages is that while W3C
Schemas let you define an element's structure when you declare the element (a concept known as defining an element
to be of an "anonymous type") it is much more common to define a named type and the declare an element to be of
that type. Types don't have to be the simple data types known in typical programming languages such as integer, string,
or Boolean; you can define an address type, complete with attributes and subelements, and then declare both
billingAddress and shippingAddress elements to be of the address type. W3C Schema extensibility
mechanisms are usually built around options for defining these types, but they still ultimately define what can go in
which elements.

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 6

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=30

Re-format page sizes

RenderX

formatter

Your schema and the industry-standard schema

You can derive a new type from any complex named type (that is, from any non-anonymous type with attributes or
subelements) that doesn't have a Final attribute to specifically prohibit it. Deriving, which can either extend or restrict
the model of the base type, is loosely based on the concept of class inheritance in object-oriented development. When
extending a type, you name the type to extend, and then specify the new parts of the content model to add to the end
of the original--and it must be added at the end--and restriction restates the content model minus the parts to omit.

The discussion of DTD parameter entity substitution earlier showed how parameter entities can be used to store subsets
of an element type's content model or attribute list. Instead of following the string substitution model, W3C Schemas
have specific constructs for each of these: the group and attributeGroup elements. When one of these is used
to define a component, that component can be redefined, giving you a more robust version of the parameter entity
technique demonstrated earlier in DTDs.

W3C Schema substitution groups let you define elements that can be substituted for specific other elements. For example,
a schema customized for U.S. use could define a zipCode element to be one that can be used instead of the
postalCode element in the base schema. The use of the complexType element's Final and block attributes
can prevent this, but as with the prevention of derived types, it's good news for extensibility that extensible elements,
types, and groups are the default that must be explicitly overridden, unlike with DTDs and RELAX NG, in which a
lack of extensibility is the default and the schema author must take explicit steps to make a schema extensible. (In
RELAX NG, the near-universal use of the optional named pattern feature means that most schemas are extensible in
practice.)

Like RELAX NG, W3C Schemas' equivalent of the DTD ANY keyword gives you more granular control over what
can constitute "any" at the specified point in your content model. While W3C Schemas lack the full power of a pattern
matching language for specifying the set of allowed names, the choices are still an improvement over the DTD ANY
keyword: you can specify that the element inserted is from any namespace, from a specific namespace, or from any
namespace other than the target namespace being defined, as with the Atom and XSLT examples mentioned above.

3. Modularity

All three schema languages provide what is often called an "include" mechanism that lets one schema file identify
another whose contents should be treated as part of the one doing the including. (W3C Schemas offer three variations
on this: include, import, and redefine.) In the examples above, one schema file would include another and
then redefine components of the included schema file.

Another reason to use inclusion in any schema language is to implement modularity. A large, complex standard schema
may group declarations into several files, with the master file being little more than a short file with instructions to
include the other modules. This kind of modularized approach was the key difference between XHTML 1 and XHTML
1.1, which provides an excellent example of why such modularity is a good thing.

A schema that takes this modular approach offers two benefits for people adapting it for customized use. One the one
hand, a customized version may only aim to support a subset of the full standard. For example, if you're developing
content for delivery on mobile phone web browsers, you may want only the core HTML markup without using the
elements that allow fancier user interface features. This is what WAP (Wireless Application Protocol) 2.0 did with the
XHTML Mobile Profile. On the other hand, you may have new markup customized for your application that you want
to add to the core, so you can write new modules and include them in the master file along with the existing standard
modules. (You would still need the techniques described earlier to integrate new elements and attributes with the
content models of the existing elements.)

More likely, you'd want to do both: pick a subset of the available modules and then include new modules, specialized
for your application, into your schema file. This is what the PRISM standard for magazine and journal metadata did
when they created their PAM (Prism Aggregator Message) content DTD for use with magazine articles.[PRISM] So,
while some people saw no new features in the transition from XHTML 1.0 to XHTML 1.1[XHTML1.1], the PRISM
group saw an obvious improvement to take advantage of.

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 7

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=30

Re-format page sizes

RenderX

formatter

Your schema and the industry-standard schema

4. Some Schemas

We've seen some of the techniques used by XHTML and Atom to allow extensibility. Let's look at some extensibility
options in other popular schemas.

4.1. SOAP 1.2

The following shows an excerpt from a W3C Schema excerpt for a SOAP envelope.[SOAP1.2] The basic document
envelope, Envelope, consists of an optional Header followed by a Body element.

<I-- Envelope, header and body -->
<xs:element name="Envelope'" type="'tns:Envelope" />
<xs:complexType name="Envelope™ >
<xs:sequence>
<xs:element ref="tns:Header' minOccurs="0" />
<xs:element ref="tns:Body" minOccurs="1" />
</Xs:sequence>
<xs:anyAttribute namespace=""##other' processContents="lax" />
</xs:complexType>

<xs:element name="Header" type="'tns:Header" />
<xs:complexType name='"Header" >

<xs:sequence>

<xs:any namespace="'##other"™ processContents="lax"
minOccurs="0" maxOccurs="unbounded” />

</Xs:sequence>

<xs:anyAttribute namespace=""##other' processContents="lax" />
</xs:complexType>

<xs:element name="Body" type="tns:Body" />
<xs:complexType name='Body" >

<xs:sequence>

<XS:any namespace="'##any' processContents="1ax"
minOccurs="0" maxOccurs="unbounded" />

</Xs:sequence>

<xs:anyAttribute namespace=""##other' processContents="lax" />
</xs:complexType>

The Header element's definition demonstrates the W3C Schema technique for allowing any element (or attribute)
from outside of the target namespace, and the Body element shows how to declare that any well-formed element at
all can be in an element's content. For a document designed to be an envelope with a payload, it makes perfect sense
to do this in the body part so that systems can ship whatever they want in the payload, but it is a bit surprising to see
so much flexibility in the header, where envelope-oriented documents typically have specific metadata elements.
However, the rest of the schema (not shown here) defines elements and types that can be used when creating the children
of the Envelope element's two potential children, so the schema does provide more guidance to SOAP envelope
content than what you see here.

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 8

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=30

Re-format page sizes

RenderX

formatter

Your schema and the industry-standard schema

4.2. DocBook

DocBook [DocBook] began as an SGML DTD for technical documentation, and the XML version has been around
for nearly as long as XML itself. It has always been modular, letting a customized version pick a subset of DocBook's
modules. The most immediate example of this practice is the schema used for this paper and the others being written
for the XML 2005 conference. [ConfSchema]

DocBook also makes it easy to customize nearly any of its elements. The following shows how the title element's
content model and attribute list are declared in the DTD version of DocBook (RELAX NG and W3C Schema versions
are also available; the DocBook Technical Committee plans to make RELAX NG the normative version in the future,
generating the others from that):

<IENTITY % local.title.char.mix ">

<IENTITY % title.char.mix
"'#PCDATA
|%xref_char.class; |%gen.char.class;
|%link.char.class; |%tech._char.class;
|%base.char.class; |%docinfo.char.class;
|%other._char.class; |%inlineobj.char.class;
|%ndxterm._class;
%local .title.char._.mix;">

<IELEMENT title %ho; (Wtitle.char._.mix;)*>
<IENTITY % local.title.attrib ">

<IATTLIST title
%pagenum.attrib;
%common.attrib;
%title.role.attrib;
%local .title.attrib;

>

To add a "myCustElement" element as something that could be included inline in a title element, you would redefine
the local . title.char.mixentity as"| myCustElement". To add a new "myCustAttribute" attribute to the title
element, you could redefine the local . title.attrib entity as "myCustAttribute NMTOKEN #IMPLIED".

The inclusion of an empty "local" entity reference in the content model and attribute list for the title element is the
kind of arrangement that you'll find throughout DocBook, and this was in the SGML version of DocBook before XML
was invented. It will be interesting to see how the DocBook Technical Committee takes advantage of RELAX NG's
extensibility options when they make that language the normative language for the schema.

4.3. SVG

Several of the larger, more complex standards offer a leaner, "lite" version that is simpler and easier to implement. In
fact, the original reason for XML's existence was to be a subset of SGML that would be easier to implement. DocBook
and XHTML both have "lite" versions, and the modularity described earlier makes these versions easier to specify.

The W3C's SVG (Scalable Vector Graphics) Working Group takes an interesting approach with SVG's schema, which
uses the RELAX NG language[XMLY]: instead of defining a fully-featured version and then leaving some parts out to
make the simpler subset, they've made the "tiny" version the core and made the full version an extension of that.

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 9

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=30

Re-format page sizes

Your schema and the industry-standard schema

This is done for separately for each module. For example, the "tiny" version of SVG's font module has the following
in the tiny-font.rng schema file:

<define name="SVG.glyph.class">
<notAl lowed/>
</define>

Why define something and then disallow it? For the same reason that you'd create an empty parameter entity ina DTD:
as an easily-redefined placeholder to make customization easier. The full version of SVG 1.2 has a file called font.svg,
which includes the font declarations from the tiny version with this line:

<include href="._/Tiny-1.2/tiny-font.rng"/>

It then redefines the SVG.glyph.class pattern like this:

<define name="SVG.glyph.class'" combine="choice’">
<choice>
<ref name="SVG.Animation.class"/>
<ref name="SVG.Structure.class"/>
<ref name="SVG.Conditional.class'/>
<ref name=""SVG.Image.class"/>
<ref name="SVG._Multilmage.class"/>
<I-- (15 additional ref elements removed) -->
</choice>
</define>

A similar approach lets the other modules build around the tiny versions.

44.NITF

NITF (News Industry Text Format) is very popular for newspaper content. The following shows a few declarations
from version 3.2 of their DTD[NITF]:

<IELEMENT nitf (head?, body)>
<IELEMENT head (title?, meta*, tobject?, iim?, docdata?,
pubdata*, revision-history*)>

<IATTLIST head
%global-attributes;
>

<IELEMENT meta EMPTY>

<IATTLIST meta
%global-attributes;
http-equiv NMTOKEN #IMPLIED
name NMTOKEN #IMPLIED
content CDATA #REQUIRED

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 10
RenderX

formatter

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=30

Re-format page sizes

RenderX

formatter

Your schema and the industry-standard schema

>

<IENTITY % global-attributes -
id 1D #IMPLIED
">

There's very little room for customization here. (Elsewhere in the DTD, there is a general -text parameter entity
that could be redefined to allow new inline elements on most content elements, as with the DocBook title element
earlier, but little if anything at higher structural levels.) A typical reason for customization would be to allow the addition
of metadata specific to your shop's workflow, and the logical place for it would be in the NITF head element (compare
the structure of the SOAP Envelope element that we saw earlier) but NITF offers no way to customize the head
element's content model to add something new. You could redefine the global-attributes entity to hold a new
attribute, but that would add the same attribute to the 65 other elements whose attribute list declarations reference this
entity. The optional meta element offers no place in its content model to add children, so the use of its name and
content attributes is about the only option for adding named information inside an NITF document.

There's another option for bundling customized information with schemas like this: defining a wrapper element that
includes the schema’s document element and other elements that you want to add. For example, let's say | want to add
the elements myE11 and myEN2 to an NITF document. | could declare the following DTD:

<IELEMENT myWrapper (myHeader,nitf)>
<IELEMENT myHeader (myEIl1l,myElI2)>
<IELEMENT myEI1 (#PCDATA)>

<IELEMENT myEN2 (#PCDATA)>

<IENTITY % nitfdtd SYSTEM "nitf-3-2.dtd">
%nitfdtd;

It declares a container element called myWrapper that includes a header I've defined called myHeader and the ni tf
element that is the document element of a standard NITF document. The myHeader element contains my new fields
myE11 and myEI2. When NITF gets upgraded, | can plug the new version into the entity declaration at the bottom
of this DTD. Then, I'll be able to create NITF documents that conform to the new version and include my customized
new fields.

NITF's global-attributes parameter entity does define an optional 1D attribute for many of the elements. This
gives you a further hook for storing information specific to a document or to its individual elements. If an element has
a unique 1D value of "i643" and you can reference the document itself with an unambiguous identifier, then you can
take information that you might otherwise have added as an attribute or subelement of that document and store it outside
of that document in another document or in a database. The unique ID value gives you a key to identify what the in-
formation describes. This ability to store information about any resource or subresource that has an identifier is behind
much of the philosophy underlying RDF (Resource Description Format).

5. Picking and Extending a Schema

How important is extensibility when picking a schema? That depends on several factors. Maybe a given standard really
has everything you need. Maybe you're in an industry in which one XML format is so dominant that not supporting it
would be foolish. For example, if you publish a newspaper, | can't say that you shouldn't use NITF because it isn't ex-
tensible. It's one of the most commonly used standards in a large industry that |1 know of.

If your analysis of your content reveals that you need to track more information than a particular standard allows for,
the first step in investigating the adaptability of the standard is to look through the schema itself. Digging through a
schema and evaluating its extensibility can be difficult, though; an extensible schema can be more difficult to read

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 11

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=30

Re-format page sizes

RenderX

formatter

Your schema and the industry-standard schema

than a less flexible one because of the role that indirection plays in extensibility. For example, extensive declaration
and referencing of named schema components leads to components that reference components that reference components,
making it more difficult to learn which elements contain which other elements. Another problem with schema extens-
ibility features is that their position among the more arcane features of the relevant specification means that they can
be inconsistently implemented among the different tools that claim support for that schema language. This is mostly
a problem with W3C Schemas.

The second step in evaluating a schema's extensibility--and don't knock yourself out in the first step before proceeding
to this step--is to find a mailing list where the schema is discussed and ask people about their experiences adapting the
schema. (If you can't find a mailing list where such things are discussed, then consider this lack of activity as less
reason to use that schema.) Try a Google search on the name of the standard and the word "extensibility"; you'd be
surprised how easily you can find discussions of the fine points of extending a particular standard.

Microformats are a new trend that holds some promise for work on extensibility. XHTML is the most popular schema
being extended to create microformats, but the principle can apply elsewhere: take a specific module of a popular
schema and use its more open-ended features, such the class attribute so common in XHTML or the rol e attribute
found in most DocBook elements, to identify the semantics of your information. Doing this instead of making up new
elements for your information makes it easier to use your documents with existing tools. While this is generally only
applied to small, self contained handfuls of information such as outline and calendar information (hence the "micro"
part of the name "microformats™), the extensive work going on in this area holds promise for anyone interested in
schema extensibility and adaptability.

Bibliography

[ATOM] The Atom Syndication Format, 15 August 2005. Available at http://www.ietf.org/internet-drafts/draft-ietf-
atompub-format-11.txt.

[ConfSchema] XML 2005 Conference Schema. Available at http://2005.xmlconference.org/node/91.
[DocBook] DocBook documentation [http://mwww.docbook.org] .

[NITF] News Industry Text Format document Type Definition - Version 3.2, 10 October 2003. Available at ht-
tp:/iwww.nitf.org/IPTC/NITF/3.2/dtd/nitf-3-2.dtd.

[PRISM] PRISM and PAM specifications. Available at http://www.prismstandard.org/specifications/.
[SOAPL1.2] soap-envelop schema. Available at http://www.w3.0rg/2002/12/soap-envelope/.
[SVG] RNG for SVG 1.2, 27 October 2004. Available at http://www.w3.0rg/Graphics/SVG/1.2/rng/.

[XHTMLL1.1] XHTML 1.1 - Module-based XHTML, 31 May 2001. Available at http://www.w3.0rg/TR/2001/REC-
xhtmI11-20010531/.

[XML] Extensible Markup Language (XML) 1.0 (Third Edition), 04 February 2004. Available at ht-
tp:/lwww.w3.0rg/TR/2004/REC-xmI-20040204/.

[XSD] XML Schema Part 1: Structures Second Edition, 28 October 2004. Available at http://www.w3.0rg/TR/2004/REC-
xmlschema-1-20041028/.

[XSLT.RNG] XSLT Relax NG Schema. Available at http://www.thaiopensource.com/relaxng/xslt.rng.

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 12

http://www.ietf.org/internet-drafts/draft-ietf-atompub-format-11.txt
http://www.ietf.org/internet-drafts/draft-ietf-atompub-format-11.txt
http://2005.xmlconference.org/node/91
http://www.docbook.org
http://www.nitf.org/IPTC/NITF/3.2/dtd/nitf-3-2.dtd
http://www.nitf.org/IPTC/NITF/3.2/dtd/nitf-3-2.dtd
http://www.prismstandard.org/specifications/
http://www.w3.org/2002/12/soap-envelope/
http://www.w3.org/Graphics/SVG/1.2/rng/
http://www.w3.org/TR/2001/REC-xhtml11-20010531/
http://www.w3.org/TR/2001/REC-xhtml11-20010531/
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.thaiopensource.com/relaxng/xslt.rng
http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=30

Re-format page sizes

RenderX

formatter

Your schema and the industry-standard schema

Biography

Bob DuCharme
consulting software engineer
LexisNexis [http://www.lexisnexis.com/]
Charlottesville
Virginia
United States of America
http://www.snee.com/bob

Bob DuCharme is the author of Manning Publications' "XSLT Quickly," Prentice Hall's "XML: The Annotated
Specification” and "SGML CD," and McGraw Hill's "Operating Systems Handbook." He writes the monthly
"Transforming XML" column for XML.com and has contributed to Dr. Dobb's Journal, perl.com, XML Magazine,
XML Journal, IBM developerWorks, XML Developer, O'Reilly Books' "XML Hacks," and Prentice Hall's "XML
Handbook." A consulting software engineer at LexisNexis, Bob received his BA in religion from Columbia Uni-
versity and his masters in computer science from New York University. Bob's O'Reilly Network weblog
[http://www.oreillynet.com/pub/au/1191] is dedicated to linking-related topics.

XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter. 13

http://www.lexisnexis.com/
http://www.snee.com/bob
http://www.oreillynet.com/pub/au/1191
http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=30

	1. Introduction
	2. Customizability and Schema Languages
	2.1. DTDs
	2.2. RELAX NG
	2.3. W3C Schema

	3. Modularity
	4. Some Schemas
	4.1. SOAP 1.2
	4.2. DocBook
	4.3. SVG
	4.4. NITF

	5. Picking and Extending a Schema
	Bibliography

