
Linking Outside the Box
Cross referencing between XML documents

Bob Stayton
Copyright © 2005 Bob Stayton, Sagehill Enterprises

Abstract

When managing large technical documentation sets, the ability to cross reference provides huge
gains:

- Cross references let you document information once. When information is needed in another context,
a writer can cross reference to it rather than repeat it.

- Writers can specialize. Writers don't need to become experts on every subject when they can refer
the reader to the best information on a subject.

- Update maintenance is easier because the information can be updated in a single place rather than
several places. Also, link text can be automatically generated.

- Translation costs are reduced because there is less content to translate.

XML supports cross referencing using the ID/IDREF mechanism, but such links can't go outside the
current document. What if the needed information is in another document? Hard-coded URLs are
notoriously difficult to maintain, and the XLink standard has not been widely implemented.

The DocBook community has implemented olinks, a powerful and versatile cross referencing system
that lets you wire together a collection of documents with maintainable links. By specifying just two
attributes, you can link anywhere in a collection of documents. The olink system saves cross reference
information for all documents in a simple XML database. At runtime, the XSL stylesheet reads the
database, forms the appropriate URI, and generates up-to-date hot link text.

Olinks enable DocBook to deliver on the promise of true modular content authoring. If olinks are
used for internal as well as external linking, then file modules can be small and valid, with no unre-
solved IDREFs. Modules can be combined with XInclude into larger documents, with the stylesheet
resolving all cross references from the database.

RenderX
1XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=7

Table of Contents
1. Introduction .. 3
2. Background ... 3

2.1. Advantages of cross referencing .. 4
2.2. Designing a cross referencing system ... 5
2.3. Cross referencing in DocBook .. 5
2.4. What about XLink? .. 5
2.5. Resolve to rendered documents .. 7

3. Olink XSL implementation .. 7
3.1. Two new olink attributes ... 8
3.2. Target data format .. 9
3.3. Processing olinks ... 11

3.3.1. Generate data files ... 11
3.3.2. Merge into target database ... 11
3.3.3. Pass database reference ... 12
3.3.4. Look up olink data ... 12
3.3.5. Style each olink ... 12

4. New DocBook capabilities ... 13
4.1. Modular XML files .. 13
4.2. Asynchronous processing ... 14
4.3. Links to open source doc ... 14
4.4. Faster XML web service .. 14
4.5. Language fallback .. 15

5. Conclusions ... 15

RenderX
2XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Linking Outside the Box

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=7

1. Introduction
Cross referencing is a powerful tool when writing technical documentation. It lets you document something once in
an authoritative manner, and then refer to that information from other points in the documentation as needed. There is
less maintenance because information is not repeated, and the reader always has access to the most accurate information.
With modern hypertext readers such as HTML and PDF browsers, the reader can jump immediately to the references.

Yet the basic linking mechanism built into XML does not support cross referencing to targets outside the current doc-
ument. This has forced authors to put all the content within the scope of cross referencing into a single XML document.
This is an unwieldy solution that runs counter to the goals of reusable content modules.

The W3C XLink Recommendation was supposed to address this deficit for XML, but it does not provide the methods
to process such links, and almost no general purpose tools for XLink exist.

To satisfy this need for cross referencing, the DocBook community created the <olink> element. This elements lets
the author identify an external document and a reference point within that document. The XSL stylesheet then processes
that information into a link. This scheme enables several important new features in a DocBook publishing system:

Links between documents Now you can make cross references to content in other DocBook documents.
You no longer have to put all the content in one document to form cross refer-
ences.

Modular content files. Create smaller XML files that can be processed individually, merged into larger
documents, and recombined into different documents.

Asynchronous processing. Process different documents at different times while maintaining cross references
between them.

Links to open source documentation. Maintain cross references to a collection of open source documentation, which
is often the most authoritative content on a given subject.

Fast XML web service. Process on the fly only a small amount of requested content instead of an entire
book or set.

Language fallback If your translated document has cross references to a document that did not get
translated, then the link should fall back to an available language.

Olink enables these features because it breaks free of the constraint of using ID/IDREF for cross references. Yet this
system has been implemented without any changes to the XML standards.

2. Background
The cross referencing system that is built into XML is based on ID and IDREF attribute types. An ID attribute establishes
a target name for an element, making it a potential destination. Then an IDREF attribute is used in a cross reference
element to point to a target ID.

XML requires that the ID reside in the same document as the IDREF. That way the document validation step can
confirm that cross references are valid. This requirement means that any content you want to cross reference to must
be in the same document. In DocBook, this is typically done by using larger document containers such as <book> or
<set> elements to hold everything you want to cross reference among.

Cross referencing within a large document set using ID/IDREF creates many problems. It is unlikely you would put
all the content in a single file, so writing and editing means working with system entity files or XIncludes that contain
part of the content. But each such file cannot be validated if it has IDREF links to targets outside of itself. And when

RenderX
3XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Linking Outside the Box

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=7

you want to process any of your content, you have to process all of it at once, even if you make a minor change in one
component. These burdens in the editing and processing stages inhibit the use of cross references.

2.1. Advantages of cross referencing
Cross referencing provides huge gains for managing a large documentation set:

• Cross references allow you to document information once. When part or all of some information is needed in an-
other context, there is no need to repeat the information; a writer can just cross reference to it.

• Writers can specialize. Writers don't need to become experts on every subject when they can just refer the reader
to the best information available on that subject.

• Less translation. By pointing to content that is already translated, there is no need to translate the same information
more than once.

• Easier update maintenance. Whenever the same information is repeated in more than one document, any updates
require finding and updating all such documents. If the information appears once and the other documents only
cross reference to it, then you only have to update the information in one place.

• Users get more accurate information. If the information appears in more than one place, there is a chance that only
one will be updated because no one remembered to update the other instances. If the information is structured as
one instance and several cross references to it, then the user will always get the updated information.

• Direct cross references are more useful than generic textual references. Without the machinery to resolve cross
references, an author has to resort to general cross references to a document's title. That leaves it up to the reader
to locate the other document and find the information within it. A cross reference that takes the reader directly to
the new information is more likely to be used.

Cross references become even more useful when the processing machinery can automatically generate their cross ref-
erence text from information in the target of the cross reference (e.g., the title and chapter number in the target document).

• Less maintenance. If a section title is updated, no one has to remember to also update the text for every cross reference
which refers to that title. Likewise, if a numbered target (e.g., Figure 3-2) is moved so that its number changes, the
cross reference number is automatically updated when next processed.

• Users get more accurate information. The hot link text always accurately reflects the title and number of the target
that they land on.

• Less translation. Empty <xref> elements do not need to be translated. The localized hot text is automatically
picked up from the translated target document.

• Flexible presentation. While an HTML stylesheet can make the cross reference into a hot link, a print stylesheet
can rearrange the words and possible add a document title and page number.

These benefits of cross referencing come at a cost: that of managing the cross references. The standard ID/IDREF
mechanism manages cross references quite effectively by validating them when the document is validated. Cross ref-
erences implemented without ID/IDREF must be managed carefully if you don't want to degrade your documents. If
a reader follows a link and lands in the wrong place (or no place), then they are less likely to trust the information they
are reading. The cross referencing machinery must help maintain the accuracy of cross references, and it must be easy
and automatic. This is particularly true when creating and maintaining large documentation sets. There are never enough
eyes to check every cross reference against its target for each product release cycle or publication.

RenderX
4XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Linking Outside the Box

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=7

2.2. Designing a cross referencing system
A full-featured cross referencing system should be able to do the following:

• Cross reference within large documentation sets without having to process them all at once as a single document.

• Cross reference to content that cannot be in the current document because it resides in a different department or is
processed on a different schedule.

• Cross reference to open source documents you are reprocessing for release on your own media.

• Cross reference to open source documents that are already processed and released.

• Automatically generate text for all of these cross references, with possibly different text for different output formats.

• Flag unresolved cross references.

• Publish a collection of target data through which you want your own documents to be cross referenced.

2.3. Cross referencing in DocBook
The cross referencing system described above has been implemented in DocBook. There are four cross reference elements
in DocBook, three of which cannot be used in such a system.

• In a <link> element, the content of the tag becomes the displayed hot text of the link. It uses a linkend attribute,
which is of type IDREF. The value of the attribute must match some attribute of type ID somewhere in the document.
In DocBook, these are generally the common id attribute on some element. It is a validation error if no match is
found within the document.

• An <xref> element differs from a <link> element in that <xref> is empty and expects the processing stylesheet
to automatically fill in the hot text using information from the target of the link, such as its title. But it too uses a
linkend attribute to establish an ID/IDREF link within the document. Again, it is a validation error if no match
is found within the document.

• A <ulink> element is a URL link. It uses a url attribute to establish a direct link to a URL that a browser is
expected to be able to follow. Generally the element's content is used as its hotlink text. But if the element is empty,
the value of the url attribute is used as the hot text. Although a <ulink> can cross reference to another document,
the link is hard wired and cannot generate text.

• The <olink> element is designed for linking to other documents. It does not use ID/IDREF attributes, so there
is no requirement that the target of the cross reference be in the same document. The processing stylesheet is ex-
pected to resolve the entity and establish the link to the other document in a suitable fashion.

2.4. What about XLink?
XLink was designed to establish links between XML documents. XLink received the status of a full W3C Recommend-
ation on 27 June 2001. See XML Linking Language (XLink) Version 1.0 [http://www.w3.org/TR/xlink/]

XLink uses the idea of global attributes in a separate xlink namespace to make elements in a DTD into XLink elements.
Thus DocBook's olink could be made into an Xlink element by adding new attributes to the DocBook DTD. The
full XLink spec provides for multiple links and bidirectional links between local and remote resources. It also lets you
maintain link information outside the documents themselves in separate link bases. It was expected that many applic-
ations would arise to make use of these extended link features.

RenderX
5XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Linking Outside the Box

Re-format page sizes

http://www.w3.org/TR/xlink/
http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=7

But XLink also supports simple XLinks, which is the type that document authors are currently used to. Simple XLinks
point from the current element to another element, which could be in the same document or another document. A
simple XLink can have other XLink attributes such as role, title, and actuate to modify its behavior. But it is always a
single link from here to there.

It is the XLink href attribute that establishes the link. It looks similar to an HTML href attribute. The first part is a
URI that points to a document. It could be a URL such as those used in HTML documents, or it could be a more gen-
eral URN (Uniform Resource Name) with some mechanism for resolving the name to an actual resource. A second
optional part, known as a fragment identifier, follows a # character and points to some location within that document.
XLink permits fragment identifiers to use the powerful syntax of XPointers to locate information within the document.
But it also supports the simplest form, which is just the value of an ID attribute within the target document. For example:

<xref xlink:href="../OS-Userguide/book.xml#Mousing"/>

This assumes that a new xlink:href attribute has been added to the xref element in the DTD.

But how is this XLink to be interpreted when the current document is processed into HTML? Since this is an xref
element, the stylesheet is expected to generate the hot link text, but what should it say? Also, exactly what does the
user see when they click on the link? It is unlikely the author intended the reader to be dumped into the middle of an
XML document to display raw XML markup like this:

<section id="Mousing">
 <title>Using a Mouse</title>
 <para>This is how you use a mouse</para>
</section>

Both the generated text and the destination XML must be styled appropriately for the presentation of the current docu-
ment. That's easy, just apply a stylesheet, right?

Well, it turns out that it isn't all that easy. In a W3C Note XML Linking and Style [http://www.w3.org/TR/xml-link-style/],
Norman Walsh outlines many of the complications that can arise, even with simple XLinks. Here is a sampling:

• Should the other XML document be styled with the current stylesheet (assuming it applies), or the other document's
stylesheet?

• If the latter, and the other XML document doesn't have a stylesheet processing instruction in it, how does one de-
termine the stylesheet for it?

• If the generated hot link text refers to a numbered item in the target document, then the entire target document must
be styled to get the correct number for the reference. Simply counting XML elements in document order won't
work because a stylesheet can transform the elements into a new order.

• XLinks that embed content from another resource can alter number sequences in complex ways.

Several more complications could be added to the list:

• How do you handle profiling (conditional text) that can generate different output from the same XML document?
Profiling can affect number sequences, and whether the target is even available to be linked to. An XLink trying
to style the document would need to know the precise means by which the document was profiled, which could be
quite complex based on prefilter steps or specific attribute values.

• Parameters passed to the target's stylesheet can alter how the target document is styled. An XLink trying to style
the document would need to know the parameters that affect processing.

• How do you handle chunking rather than displaying the entire document?

RenderX
6XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Linking Outside the Box

Re-format page sizes

http://www.w3.org/TR/xml-link-style/
http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=7

• How will the target document's own cross references be handled? When the target is styled for HTML, it will include
HREFs to other HTML files. If the target document is styled on the fly, those HTML files may not actually exist,
and those links will fail.

2.5. Resolve to rendered documents
The basic problem with XLink is how to resolve it to a styled result in your file. It appears you have to know their
stylesheet and their profiling. You can't guess, you have to know with certainty what the results will be for your XLink
to work.

If that is the case, then it becomes very difficult to link to the XML source document, which has several profiles in it
and can be processed with several different stylesheets. Until that problem is solved, it is safer to cross reference to a
rendered document with one profile and one style already applied. Cross references ultimately must land on a rendered
version of the target if they are to be consumable.

But if we must link to a rendered document, why not just use <ulink>? Because ulink addresses are not flexible or
robust enough. It is important to distinguish between the authoring process and the rendering process. You want your
author to establish a logical link from one XML source document to another. You want a link that remains valid through
several iterations of the product, and through several different renderings for print or online. A ulink that is valid in
the current version may not be valid in the next. For ease of maintenance, the links should not require an editing pass
through the document to update them for each new release. Rather, the processing machinery should resolve the abstract
logical link to a rendered link for each release. An XLink or olink is the abstract logical link from XML to XML. An
HTML href is a concrete working link.

At some point you render your document, that is, convert the XML to a final form for consumption. This conversion
is done either ahead of time for packaging on the media, or on the fly in the server or browser. You want that logical
link turned into a working link, using the actual rendered text, label, and URL of the rendered target. As was described
above, it currently must resolve to a rendered version of the target document.

3. Olink XSL implementation
If cross references must finally resolve to a rendered document, then it is not necessary to process every target document
just to resolve a link. If the appropriate information for linking was saved when the target document was rendered,
then we can just use that information in the current document to form our links, and the target document would not
have to be parsed. The datafile associated with olink in the DocBook stylesheets provides such a mechanism.

A separate DocBook stylesheet (targets.xsl) generates a structured distillation of information about all the potential
cross reference targets in a document. The target data is stored in a separate file from the document. Once the target
data is separated from the document itself, it becomes accessible for cross referencing applications. Of course, it must
be kept up to date, and a Makefile or Ant task can help with that.

The target data file is an XML document that consists of a set of nested <div> elements. Each div element records
the information for a single strucutural element in the document, such as book, chapter, section, etc. Other potential
cross reference targets that are not part of the structural hierarchy are recorded in <obj> elements.

The implementation of olink in the DocBook XSL stylesheets has the following goals:

• Make it easy for authors to link between documents.

An author should only have to establish the logical link from one document to another. That means pointing to the
target document, and to the specific target element within that document. The author should not have to worry
about file locations, URL prefixes, or adding entity declarations to the DTD.

• Minimize overhead in maintaining links.

RenderX
7XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Linking Outside the Box

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=7

Over the lifetime of a document, much can change in how a link is resolved during the processing for each release.
To avoid having to perform an editing pass through your document just to update links, the olink element should
record the minimum information to establish the link, and not provide details for resolving or styling the link.

• Support HTML, print, and other potential output formats.

To maintain the separation of content and formatting, olinks should be useful in all output formats.

• Provide flexibility in rendering links.

Each organization may have its own style for rendering links. Also, external links may provide different information
or be styled differently from internal links.

• Validate the links during processing.

The processing machinery should flag broken links so they can be fixed.

3.1. Two new olink attributes
To meet these goals, it was necessary to add two new attributes to olink's attribute list. These new attributes appeared
first in the DocBook XML 4.2 DTD.

targetdoc String identifying the document containing the target of the cross reference.

targetptr The locator of the target element within the targetdoc, currently using its id attribute.

To form an olink, the author provides just two attribute values. For example:

<olink
 targetdoc="OS-Userguide"
 targetptr="UseMouse"/>

The author can optionally provide link text in the olink content. For an empty olink, the stylesheet is expected to gen-
erate the text for the link.

To identify the target document, a targetdoc attribute is used. The targetdoc attribute is a simple identifier
string (of type CDATA) that is resolved to an actual document by the stylesheet.

To identify the target element, a targetptr attribute is used. Its value must match that of an id attribute in the target
document. Together, the two attributes make it easy to form an olink: you just have to identify the target document
and the element within that document.

No other information need be supplied in the XML markup When the XSL stylesheet encounters an olink with these
attributes, it uses XSL templates to resolve the link. As you will see, an optional xrefstyle attribute can be added
to provide hints to the stylesheet on how to format a given olink instance.

Of course, the stylesheet cannot resolve such links on its own, so it must be supplied with sufficient information to do
so. In the XSL implementation, the stylesheet is given a parameter (in a customization layer or at runtime) that points
to a database file that provides that information. The advantage of supplying it at runtime is that it can be different for
different builds of the document. A new release can refer to a new version of the target database. An HTML build can
refer to an HTML rendering of the target documents.

The target database is a structured XML document with its own DTD. The data on potential cross references in a
document is extracted using the special targets.xsl stylesheet. Then the data for the individual documents is

RenderX
8XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Linking Outside the Box

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=7

merged into a single target database, and the resulting filename is passed to the DocBook stylesheet as a parameter..
The next section describes this data format.

3.2. Target data format
A target database contains information for all the target documents the stylesheet may need during a given build. The
overall structure looks like this:

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE targetset SYSTEM
 "/tools/docbook-xsl-1.52.1/common/targetdatabase.dtd" [
<!ENTITY ugtargets SYSTEM "/doc/userguide/target.db">
<!ENTITY agtargets SYSTEM "/doc/adminguide/target.db">
<!ENTITY reftargets SYSTEM "/doc/man/target.db">
]>
<targetset>
 <targetsetinfo>
 Description of this target database document,
 which is for the examples in olink doc.
 </targetsetinfo>

 <!-- Site map for generating relative paths between documents -->
 <sitemap>
 <dir name="documentation">
 <dir name="guides">
 <dir name="mailuser">
 <document targetdoc="MailUserGuide" baseuri="userguide.html">
 &ugtargets;
 </document>
 </dir>
 <dir name="mailadmin">
 <document targetdoc="MailAdminGuide">
 &agtargets;
 </document>
 </dir>
 </dir>
 <dir name="reference">
 <dir name="mailref">
 <document targetdoc="MailReference">
 &reftargets;
 </document>
 </dir>
 </dir>
 </dir>
 </sitemap>
</targetset>

Set the database encoding to utf-8 for the database, regardless of what encoding your documents
are written in. The individual data files are written out in utf-8 so a database can have mixed
languages and not have mixed encodings.

RenderX
9XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Linking Outside the Box

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=7

Declare a system entity for each document target data file.

Root element for the database is targetset.

The targetsetinfo element is optional, and contains a description of the collection.

The sitemap element contains the framework for the hierarchy of HTML output directories.

Directory that contains all the HTML output directories.

Directory that contains only other directories, not documents.

Directory that contains one or more document output.

The document element has the document identifier in its targetdoc attribute.

For documents processed without chunking, the output filename must be provided in the baseuri
attribute since that name is not generated by the document itself.

The system entity reference pulls in the target data for this document.

The data for each <document> is in a separate data file that is pulled in as a system entity reference. That data is
structured in a manner similar to its target document. For every hierarchical element (book, chapter, section, appendix,
etc.), there is a corresponding <div> element to record its target data. The nesting of div elements captures the parent-
child relationships between elements. The value of each div element's id attribute would be captured, except that
generated IDs are not included because they are not stable target names. In addition to the hierarchical elements, the
collection includes all formal elements (tables, figures, etc.), and any block and inline elements that have ID attributes.
These are stored as <obj> elements in the data set.

Here is an example of the target data for one document that contains only an article, a table, and a section:

<?xml version="1.0" ?>
<div element="article" href="#publish" number="" targetptr="publish">
 <ttl>Publishing DocBook Documents</ttl>
 <xreftext>Publishing DocBook Documents</xreftext>
 <obj element="table" href="xsl-processors" number="1"
 targetptr="xsl-processors">
 <ttl>XSL Processors</ttl>
 <xreftext>Table 1</xreftext>
 </obj>
 <div element="section" href="#xsl-arch" number="" targetptr="xsl-arch">
 <ttl>DocBook XSL Architecture</ttl>
 <xreftext>the section called “DocBook XSL Architecture”
 </xreftext>
 </div>
</div>

In general, generated ID values are excluded from the data set because they are not reliable targets for cross referencing.
Certain elements without ID may also be included, however. Those hierarchical elements without an ID attribute may
provide some text or context for styling the link data in the cross reference. For example, a chapter might not have an
ID attribute, but it still has a number and a title. When a cross reference is to a section that has an ID within that chapter,
the link could be styled to say "see the section `Using a mouse' in Chapter 3: Peripherals".

RenderX
10XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Linking Outside the Box

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=7

The <div> and <obj> elements are generated using a special template included with DocBook XSL that extracts
the target data from each document. The template is triggered with a stylesheet parameter named collect.xref.tar-
gets . See the DocBook XSL stylesheet documentation for more information on using the parameter.

The optional baseuri attribute is a prefix for hrefs generated for the target elements in this document. If an HTML
document is output as a single HTML file, then the baseuri is that filename, and href attributes in the data file are
of the form #elementid. The stylesheets combine the baseuri and href attribute values to form an olink. If the
HTML document was chunked on output, then baseuri is usually blank. Then the href attributes in the data file
are of the form filename.html#elementid.

3.3. Processing olinks
The processing of olinks with the DocBook XSL stylesheets can be summarized as follows:

1. Before processing a document with olinks, generate target data files for each target document.

2. Create a single target database file that pulls in the individual data files using system entity references.

3. Pass the database filename as the target.database.document parameter to the XSL processor.

4. XSL automatically looks up each olink reference in the database.

5. XSL automatically styles the target data using the current stylesheet.

Each of these steps is described in detail below.

3.3.1. Generate data files

A target data file should be produced for each target document, and for each different rendering of a document. Such
a rendering encompasses any profiling done from the original XML source file, as well as any transformations performed
by the stylesheet. It is such renderings that are the target of rendered cross references from other documents.

In this scheme, the data file must closely match the rendering of the document. Effectively, the datafile should be
produced as a side effect of styling the document, at the same time the document output is produced. But it should also
be possible to extract the target data without producing the actual rendered output. The stylesheets support both modes
of operation.

For a rendering to print, an additional step must be taken to extract the page numbers for each target after the document
has been paginated. These page numbers are merged back into the data file based on the ID values associated with
them. This feature is dependent on an extension to the FO processor.

During the development process, a target data file should be generated as often as the document is changed. The final
processing run of a document before publication should produce a final data file that can be targeted by other documents.

3.3.2. Merge into target database

Each document with olinks has a cross referencing scope, which is the collection of documents it is targeting for cross
references. To process the olinks in a given document, the target data for all documents in that scope is merged into a
single target database. The application can manage this in several ways.

If you are building a stable collection of documents that you cross reference among, you may just merge all of them
into one database. Even if document A does not reference document B, it might after further editing or in a future release.
If you can clearly define one scope and manage it as one database, then the job is easy.

RenderX
11XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Linking Outside the Box

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=7

If you are building documents that refer outside your own collection, then you need to be more careful. Each document
may have its own scope, which is defined by the collection of olink targetdoc values in the document. The processing
application may assemble a custom database on the fly from a collection of individual target data files. It is your job
to make sure the target data is available for any of those target documents.

It is not necessary to move a lot of data around to form such a database. A database is a merger of several XML docu-
ments. This can be accomplished today using a wrapper around system entity references or XIncludes. On the other
hand, some shops might use Makefiles or Ant tasks to load target data into a relational database such as MySQL, and
then extract a custom target database document for each build.

Within a target database file, each document's target data is wrapped in a <document> element. See Section 3.2,
“Target data format” for a complete description. Additional attributes of <document> are filled in when the database
is assembled.

The database also may have a top-level sitemap child whose structure describes an output hierarchy of directories.
Each dir element in the sitemap has a directory name attribute. Directory elements can be nested, as on a filesystem.
At runtime, the applicaton passes in a parameter indicating the location in this directory hierarchy where the current
document will be placed. This permits the stylesheet to compute a relative HREF from each processed document to
each target document. If a target document is not in the output hierarchy, then its data container must have a baseuri
attribute that provides the first part of its HREFs.

3.3.3. Pass database reference

However the target database is assembled, it is passed at runtime to the DocBook stylesheet as a parameter. The applic-
ation manages which database is used for each document. Put the pathname to the database document in the tar-
get.database.document parameter.

3.3.4. Look up olink data

As the document is processed with the stylesheet, the olink template has a routine to look up the data it needs from the
database. It uses the targetdoc attribute in the olink to locate the document container it needs in the database. It
is an error if it isn't there.

Then it searches for the targetptr attribute among the div and obj descendants of that document container.

3.3.5. Style each olink

Once the proper div or obj element is found in the database, the olink template uses the data in that element to style
the link. Depending on the attributes and content of a given olink, this may mean just generating the HREF, or it may
include generating the cross reference text. In the case of a print document, the template may insert a page reference
or add a document title.

A generated cross reference text string generally uses the already assembled string in the <xreftext> element that
was added to the data file when the target document was processed. That string represents the style of cross references
in the target document. Or an olink could use a customizable text template to style the raw data fields into a cross ref-
erence style that matches the current document. The generated text could use the same template as for <xref> elements,
or it could use a template customized for olinks.

Currently olinks use the xref context for text templates to style links. Those templates are part of the common
stylesheet templates that are shared between html and print output. If different styling of olinks is needed, a set of text
templates using a new olink context rather than the xref context could be created.

RenderX
12XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Linking Outside the Box

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=7

An optional xrefstyle attribute can be added to a given olink element to provide hints to the stylesheet on how
to format the link. The DTD does not specify standard values for the attribute, so stylesheets are free to implement
whatever scheme they want. The DocBook XSL stylesheets provide three ways to use the xrefstyle attribute:

• If the attribute value begins with template: then the rest of the text after the colon is taken to be a DocBook
gentext template to use for that reference.

• If the attribute value begins with select: then the author can specify components to make up the generated text
using key words defined by the stylesheet.

• Otherwise the attribute value is taken to be a named cross reference style that is defined in the stylesheet's collection
of DocBook gentext templates.

Each of these methods is described in more detail in the reference at the end of this article.

4. New DocBook capabilities
Olinks in the DocBook XSL stylesheets enable several new capbilities in DocBook.

4.1. Modular XML files
The DocBook DTD supports large documents, all the way up to sets of books. If you want to form cross references
among the books in a set using ID/IDREFs, then the set has to be in a single document. This is so unwieldy that most
content managers break up the set into separate book system entity files, and only form the complete set at processing
time.The individual books may be further broken down into chapter system entities.

System entities are not complete XML documents. If they contain a DOCTYPE declaration, then this will usually
generate an error message when the system entity is pulled into the master document and processed.

The XInclude feature of XML permits each modular file to be a complete XML document. The master document uses
<xinclude> elements, each of which uses an XPath expression to point to the root element of a modular file. This
avoids the problem of the DOCTYPE declaration, which is left out of the inclusion.

Although each modular file may be a complete XML document, it still may not validate. If it has an xref or link
element whose linkend attributes points to an ID in another file, then the modular document is not valid on its own.
Both xref and link use the ID/IDREF mechanism, so the linkend must be in the current document.

If all the cross references to targets outside a modular component are converted to olink elements, then the file can
be validated. That is because the targetdoc and targetptr attributes are not ID/IDREF, and so they won't be
checked. The resolution of olinks takes place when the document is processed with a target database, not when the file
is validated against the DTD.

Using olinks means a modular file can be processed on its own and produce reasonable output. Any links within itself
would be resolved using ID/IDREF, and any links outside of itself would be written as olinks and resolved using the
target database.

Of course, when a modular file is processed on its own, certain context information would be lost. The third chapter
in a book would not know it was the third chapter when processed by itself, so its chapter number appear as "1".
Likewise, all chapters would begin on page 1. But context information can be provided by the target database to correct
these problems. The target database for the master document has all the information that's needed to establish the
context for the current modular file. The stylesheet could be extended to supply the <div>'s number attribute. That
number was generated the last time the target data file was generated for the whole document.

RenderX
13XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Linking Outside the Box

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=7

Although modular processing is convenient for development, it is not necessary when rendering the final document.
To ensure complete sychronization among the modules, the master document can always be processed whole. This
way you have reasonably accurate rendering in modular mode, and completely accurate rendering for final output.
And it is the master document's target data file that would be used by other documents for linking.

4.2. Asynchronous processing
Asynchronous processing means not having to process all your content at once to get cross references to work. You
can use the target data from a previously processed document to form a link. The trick is to ensure that the target data
won't change again after you process your document with the link to it.

If you are cross referencing among a collection of documents you are developing, then you have control over the target
data. To generate a target database, you can freeze the documents and collect the target data. You can do this with a
lock or a time stamp in a revision control system, or by simple agreement among developers. Each data collection be-
comes the reference point for the next cycle of development. At some point the collection is processed for a final time,
the output is published, and the target database is archived for future reference.

An author can build their own output as they need to without having to build everything. Different departments or
groups can work on their own documents, as long as they regularly synchronize the target data.

Going beyond parallel development is developing documents in sequence. Later documents can safely make references
to documents that have been published and their target data files frozen. You can even cross reference to documents
whose source you have never seen, as long as you have access to the final target data file.

4.3. Links to open source doc
Olinks managed with this scheme permit you to cross reference to open source documents that are authored in DocBook
XML. Often open source documents are the most authoritative on a subject, or at least on the software they document.
Most are published in isolation, even if they are dependent on other software, since they have no means of connecting
to other documents. Many could at least make use of active links to reference pages for the operating system they run
on.

Open source software can also be assembled like building blocks into larger applications that integrate the components
into a system. The documentation for the application needs to cross reference to the component docs. Without such
links, the application doc needs to duplicate the information, which introduces more development and maintenance
work for the authors.

If the DocBook source files are available, and you are rendering those docs, then you can extract the target data yourself
to add to your target database. Since open source docs are generally versioned, you can easily tell which version of
content you are linking to. Since you are creating the rendering, you know the rendering version as well.

The distributor of the doc will often ship rendered versions along with or instead of the XML source. If the distributor
builds a target data file for each rendering to include in the distribution, then that can be added to your target database.
Even if the XML source is not included in the distribution, links can be made to the rendered docs.

If the target data is produced as a side effect of rendering the document (controlled by a command line parameter),
then the data can be generated regularly. When the final rendering is done for release, the data file can be simply included.

4.4. Faster XML web service
With the delays in getting general support for styling XML directly in web browsers, many content providers want to
convert XML to HTML on the fly in the web server. But if your XML is a DocBook book, then the user will likely
experience significant delays while the whole book is processed. There will be even greater delays while the entire

RenderX
14XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Linking Outside the Box

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=7

book is delivered as HTML. You can chunk the output to reduce delivery time, but you still must process the whole
document each time to resolve ID/IDREF cross references.

These delays can be reduced by breaking up the large book files into smaller modular files. and using olink with a
document target database to resolve cross references within the document. Also, the target database can provide the
context for chapter numbering and such for modular files. It is much faster to parse the target data file than it is to parse
the entire book to establish the context.

So an XML repository that consists of small modular XML files linked together with olink and a target database could
be rendered to HTML on demand. Whenever a document module in the repository is updated, it also has its target data
updated in the database. When another document that targets the changed document is requested and processed, it uses
the updated data to render the links.

4.5. Language fallback
When managing a collection of documentation, it is often the case that only certain documents are translated into other
languages. If your documents are cross referencing among themselves, then some attention must be given to this issue.
You don't want to form a cross reference to a translated document that does not exist.

This problem is solved by properly assembling your target database for your translated documents. The target database
supports document elements with duplicate values of the targetdoc attribute when there are also lang attributes
to distinguish among them. That lets you to create a database with references to all language versions of a given docu-
ment.

When you process your olinks, the stylesheet first tries to find a link in the same language as the document containing
the olink (as specified by its lang attribute). If the link is not found in that language, then it tried other languages as
specified in the stylesheet parameter named olink.lang.fallback.sequence. That is a space separated list
of language codes that specifies the sequence of languages to try if the first fails.

This makes it easier to manage projects where not all documents are translated at once. As a translation becomes
available, it can be added to the database. Then the next time a document with olinks is processed, that data is available
for inclusion. But the fallback language is there until the translation is available.

5. Conclusions
This document has described the implementation of olink processing in the DocBook XSL stylesheets to support cross
referencing between documents. The keys points of this scheme are:

• It simplies the syntax to form an olink.

• It moves most of the olink information and processing outside the XML documents and into the XSL stylesheet.

• It merges target information from several documents into a target database document.

• It is designed to render links to rendered documents, thus avoiding the complexity and general lack of support for
XLink processing.

• It has been implemented today in the DocBook XSL stylesheets.

For further information, see the chapter on olinking in DocBook XSL: the Complete Guide
[http://www.sagehill.net/docbookxsl/index.html]

RenderX
15XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Linking Outside the Box

Re-format page sizes

http://www.sagehill.net/docbookxsl/index.html
http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=7

Biography
Bob Stayton

Principal Consultant
Sagehill Enterprises [http://www.sagehill.net]
Santa Cruz
California
United States of America

Bob Stayton is the principal consultant with Sagehill Enterprises, an independent center for DocBook development
and implementation. He is a member of the OASIS DocBook Technical Committee that develops and maintains
the DocBook standards. He is also a member of the technical team for the DocBook Open Repository Project on
SourceForge that develops the DocBook stylesheets and other tools. He designed and developed the XSL stylesheet
support for olinks Bob is a frequent contributor to the docbook-apps mailing list, especially on the subject of
DocBook XSL. He is the author of DocBook XSL: The Complete Guide.

RenderX
16XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Linking Outside the Box

Re-format page sizes

http://www.sagehill.net
http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=7

	1. Introduction
	2. Background
	2.1. Advantages of cross referencing
	2.2. Designing a cross referencing system
	2.3. Cross referencing in DocBook
	2.4. What about XLink?
	2.5. Resolve to rendered documents

	3. Olink XSL implementation
	3.1. Two new olink attributes
	3.2. Target data format
	3.3. Processing olinks
	3.3.1. Generate data files
	3.3.2. Merge into target database
	3.3.3. Pass database reference
	3.3.4. Look up olink data
	3.3.5. Style each olink

	4. New DocBook capabilities
	4.1. Modular XML files
	4.2. Asynchronous processing
	4.3. Links to open source doc
	4.4. Faster XML web service
	4.5. Language fallback

	5. Conclusions

