
XML Data Binding: Integrating XML and
Object-Oriented Technologies

Neil Chaudhuri

Abstract

Data are the essence of business processes and technical applications, and managing data effectively
is critical for success in any industry. To that end, XML has emerged as the dominant syntax for
data management. The fundamental organizing principle of XML is hierarchy. Parent-child relation-
ships among data are maintained to infinite depth through markup. Hierarchies also serve as a critical
component of XML’s validation capability. An XML Schema document defines the rules for struc-
turing data within an XML instance by describing a finite set of hierarchy sequences and an explicit
set of sequences of elements within them. Hierarchy, therefore, is the underlying principle of data
management in XML.

While XML is a relatively recent arrival on the technology landscape, object-oriented (OO) program-
ming has long been venerated as the dominant paradigm for developing complex, mission-critical
software. From Smalltalk and C++ to Java and C#, OO’s fundamental organizing principles for data
management are encapsulation and inheritance. Encapsulation is the principle whereby objects hide
their data and allow other objects to have access to them only through defined APIs (Application
Program Interfaces). Inheritance is the principle whereby data and behavior are passed from a parent
class to its children. Encapsulation and inheritance, therefore, are the underlying principles of data
management in OO.

As powerful as XML and OO principles are, it is no surprise that these two threads have been inter-
woven so often into the fabric of application development. However, it is just as predictable that in-
tegrating the two is not without its challenges, for their approaches to data management are nearly
incompatible. One utilizes a static hierarchy of data elements while the other utilizes dynamic data
exchange among multiple entities through method calls and inheritance.

A solution to the problem of integrating these two approaches is XML data binding. This approach
seeks to generate objects from XML Schema documents and populate them with data in instance
documents validated against the schemas. Then, after interacting and perhaps evolving in such as
way as to meet business requirements, the objects are converted back into XML instances valid
against the original schemas. The promise offered by XML data binding is enormous, yet it remains
unclear the extent to which this promise has been realized.

This paper addresses this question for the benefit of intermediate and advanced XML and OO de-
velopers who have sought to move data seamlessly between the two. The discussion begins with an
overview of XML data binding and describes the potential benefits it offers to application developers.
It then introduces the reader to two popular Java-XML binding frameworks, JAXB from Sun Mi-
crosystems and the open-source tool Castor. The core of this discussion is a comparative and
painstaking evaluation of these tools against criteria deemed to be of greatest significance to XML
analysts and Java developers in this space. Finally, conclusions are drawn regarding the relative ef-
fectiveness of the tools, and suggestions are made for further study.

RenderX
1XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

Table of Contents
1. Introduction .. 4

1.1. The Challenges of Integrated Data Management .. 4
1.2. The Case for XML Data Binding .. 4
1.3. XML Data Binding Tools: JAXB and Castor ... 5

1.3.1. JAXB .. 5
1.3.2. Castor ... 5

1.4. Course of Discussion .. 5
2. Evaluation Methodology .. 5

2.1. XML Schema Documents and Corresponding Instance ... 6
2.2. Evaluation Criteria ... 6

2.2.1. Bidirectional Integrity .. 7
2.2.2. Usability .. 7

3. Evaluation Results: JAXB .. 8
3.1. Bidirectional Integrity ... 8

3.1.1. Generation of the Object Model ... 8
3.1.2. Unmarshalling and Object Manipulation .. 10

3.1.2.1. XML Schema Data Types ... 10
3.1.2.2. <xs:sequence> .. 11
3.1.2.3. <xs:choice> ... 11
3.1.2.4. <xs:simpleType> with Restrictions .. 11
3.1.2.5. <xs:complexType> with Extensions and with abstract="true" 12
3.1.2.6. Cardinality for Elements Beyond the Default Value of 1 ... 12
3.1.2.7. Atypical Data Types ... 12
3.1.2.8. Attributes and <xs:attributeGroup> .. 13

3.1.3. Marshalling .. 13
3.2. Usability .. 13

3.2.1. Generation of the Object Model .. 14
3.2.2. Unmarshalling .. 14
3.2.3. Object Manipulation .. 14
3.2.4. Marshalling .. 15

3.3. Next Steps .. 15
4. Evaluation Results: Castor .. 16

4.1. Bidirectional Integrity ... 16
4.1.1. Generation of the Object Model .. 16
4.1.2. Unmarshalling and Object Manipulation .. 18

4.1.2.1. XML Schema Data Types ... 18
4.1.2.2. <xs:sequence> .. 19
4.1.2.3. <xs:choice> ... 19
4.1.2.4. <xs:simpleType> with Restrictions .. 19
4.1.2.5. <xs:complexType> with Extensions and with abstract="true" 20
4.1.2.6. Cardinality for Elements Beyond the Default Value of 1 ... 21
4.1.2.7. Atypical Data Types ... 21
4.1.2.8. Attributes and <xs:attributeGroup> .. 21

4.1.3. Marshalling .. 22
4.2. Usability .. 22

4.2.1. Generation of the Object Model .. 22
4.2.2. Unmarshalling .. 23
4.2.3. Object Manipulation .. 23
4.2.4. Marshalling .. 24

4.3. Next Steps .. 24
5. Summary and Concluding Remarks ... 24

RenderX
2XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

6. Suggestions for Further Research ... 25
A. mlb_globals.xsd ... 26
B. mlb_locals.xsd ... 30
C. JAXB Code Sample .. 35
D. Castor Code Sample ... 38
Bibliography ... 40
Acknowledgements .. 41

RenderX
3XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

1. Introduction
With technology becoming ever more pervasive within the realm of business, organizations have witnessed the confluence
of two powerful streams: object-oriented (OO) technologies and XML. Where the two meet is in data management.
Object-oriented code is developed to retrieve, manipulate, and persist data in such a manner as to achieve the goals of
the business. OO languages provide powerful application programming interfaces (APIs) for enabling behavior, but
they are proprietary in that no worldwide standard exists. Meanwhile, XML has emerged as the dominant syntax for
the organization and validation of data—and more recently in other areas such as the transmission and security of data
that define web services. XML does not exhibit any behavior on its own, but it is a worldwide standard recognized by
all major vendors in industry. It is not hard to see why OO technologies and XML complement each other so well and
thus why organizations derive tremendous benefits from combining the two to meet vital business needs.

1.1. The Challenges of Integrated Data Management
As is invariably the case with any technology, there are obstacles to overcome no matter how powerful the benefits
may be. A joint OO-XML solution has one key obstacle—fundamentally different approaches to data management.
The fundamental organizing principle of XML is hierarchy. Parent-child relationships among data are maintained to
infinite depth through markup. Hierarchies also serve as the basis for XML’s validation capability. An XML Schema
document defines the rules for structuring data within an XML instance by describing a finite set of hierarchy sequences
and an explicit set of sequences of elements within them.

Yet from Smalltalk and C++ to Java and C#, OO’s fundamental organizing principles for data management are encap-
sulation and inheritance. Encapsulation is the principle whereby objects hide their data along with the details of their
manipulation and allow other objects to have access to them only through the method calls defined in their APIs. In-
heritance is the principle whereby data and behavior are passed from a parent class to its children. The data management
approach utilized by XML and that utilized by OO are very difficult to resolve, for one utilizes a static hierarchy of
data elements while the other utilizes dynamic data exchange among multiple entities through method calls and inher-
itance.

1.2. The Case for XML Data Binding
The unquestioned power of XML and OO design—and even more so their union—has motivated the search for a
solution to reconcile their approaches to data management. Traditional solutions like DOM and SAX have become
quite pervasive, but they have proven wanting. DOM has an intuitive API, but it is far too costly in memory and per-
formance to be a viable option for large documents. SAX solves the resource issues associated with DOM, but it demands
sophisticated programming expertise in order to be utilized effectively. Yet in either case, developers are forced to
devote significant effort towards bridging the gap between the XML realm and the OO realm—effort better spent ad-
dressing the core business requirements of the application. Moreover, the effort is all but futile. As a consequence of
the power and complexity of XML Schema, all but the most trivial schema documents offer countless combinations
of possibilities for valid instance documents. It is impossible for developers to write code that addresses all of these
combinations. The tendency then is to write and test code to handle the common cases and hope that no gaps are exposed.
Such code is certain to fail eventually, and the subsequent rework is sure to be costly.

A more robust alternative that has captivated both the XML and OO communities is XML data binding. This approach
seeks first to validate XML Schema documents and then generate object representations of the constructs—element
declarations, attribute declarations, type declarations, and more. Subsequently, in a process called unmarshalling, these
objects are populated with data in instance documents validated against the schemas. In theory, the object model in
memory is a faithful OO representation of the hierarchical data model defined in the XML instance. At this stage,
business-logic code can interact with these objects in the manner familiar to OO developers in order to meet business
requirements. Ultimately, in a process called marshalling, the objects are serialized into new XML instance documents
faithfully representing the underlying object model. Again, in theory, these instances are valid against the original

RenderX
4XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

XML Schema document because the objects enforced the constraints like cardinality and type restrictions defined
therein.

The promise offered by XML data binding is enormous. A solution that automates efficient compatibility between the
data management approaches of XML and OO would have profound repercussions for the future of E-business.
However, the challenges are formidable. Although XML binding is automated unlike the DOM and SAX alternatives,
it still stretches the bounds of credulity that an object model can enforce the constraints imposed by the original schema
and can accurately encompass all of the combinations permitted by it. Moreover, validity must be preserved while the
objects interact with other domain objects to accomplish business objectives. Numerous tools have emerged that claim
to do all of these. It is the goal of this discussion to assess the extent to which this promise has been realized by two
leading XML data binding tools.

1.3. XML Data Binding Tools: JAXB and Castor
The XML and OO communities—particularly the Java community—have witnessed the proliferation of several XML
data binding tools claiming to solve the data integration quandary. Of these, JAXB and Castor are particularly compelling.

1.3.1. JAXB

JAXB (Java Architecture for XML Binding) is a Sun standard and is included as part of Sun’s Java Web Services
Development Pack (JWSDP) [Java Technology Documentation]. As with all Sun specifications, JAXB grew out of
the Java Community Process as Java Specification Request (JSR) 31 [JSR 31]. What is most compelling about JAXB
is that it is a standard implementation with the full support of Sun. Moreover, JAXB 2.0, which is available for public
review, will be a part of the next J2EE specification [JSR 222].

1.3.2. Castor

The venerable Castor is an open-source tool that is the oldest and most pervasive XML data binding tool. It is written
in Java, but it is proprietary software developed by the ExoLab Project [The Castor Project]. Because it is not a
standard, those who use Castor run the risk of vendor lock-in. However, it is widely viewed as the most powerful tool
of its kind.

1.4. Course of Discussion
JAXB is the Java standard for XML data binding, but Castor is the most popular binding tool available. The remainder
of this discussion will examine these tools in detail and provide a comparative evaluation against a set of criteria deemed
to be of greatest significance to XML analysts and Java developers in this space.

2. Evaluation Methodology
The methodology for evaluating JAXB and Castor has at its foundation the interest of both the XML and Java com-
munities. To that end, the XML Schema documents at the core of this discussion were composed of a variety of con-
structs, and the manner in which these constructs were reflected in the generated object models is a major point of
emphasis for this discussion. Next, a single XML instance validated against both schemas was unmarshalled with the
resulting objects manipulated and tested against several criteria. Finally, after undergoing several modifications, the
code was marshalled into new XML instances, and the well-formedness and validity of the instances were scrutinized
carefully. The following sections describe the entire evaluation process in detail.

RenderX
5XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

2.1. XML Schema Documents and Corresponding Instance
Two W3C XML Schema documents were created to serve as the basis for the assessment 1. The “business” to be
conducted with these schemas is the management of data associated with Major League Baseball. Although it is an
artifact of American popular culture, baseball is a sport that is very much data-driven. Moreover, the topic of baseball
is a welcome respite from the trite purchase-order use cases found so often in the literature.

One schema, called mlb_primary.xsd, contains only global declarations and follows many of the schema-design best
practices established in industry. It features a wide array of constructs including the following 2:

• XML Schema data types

• <xs:sequence>

• <xs:choice>

• <xs:simpleType> with restrictions

• <xs:complexType> with extensions and with abstract="true"

• Cardinality for elements beyond the default value of 1

• Atypical data types

• <xs:attributeGroup>

The second schema is called mlb_locals.xsd. This schema is largely similar to the other in terms of constructs with the
following exceptions:

• Replacement of <xs:attributeGroup> with duplicate local attribute declarations

• <xs:sequence> with restriction using <xs:union>

Where mlb_locals.xsd significantly differs from mlb_primary.xsd is in the proliferation of local declarations of elements,
attributes, and types. The purpose of this schema is to enable analysis of the differences, if any, between the object
models generated from the two schemas as a result of increased localization. However, for the sake of simplicity, the
schemas were written in such a manner as to produce identical valid instances.

Finally, a sample instance was generated that was valid against both schemas, and the xsi:schemaLocation attribute
was simply toggled to reflect the schema in question.3 This instance, called mlb.xml, served as the basis for the unmar-
shalling effort.

2.2. Evaluation Criteria
With the XML Schemas created and valid sample instances derived from them, the next step was simply to use JAXB
and Castor to derive object models from the schemas and then unmarshal the instance documents, manipulate the objects,
and marshal the objects to create new instances. The tools accomplish these tasks in different ways. The following
sections detail the criteria against which their approaches were evaluated.

1See Appendices 1 and 2
2The xs prefix maps to the XML Schema namespace: http://www.w3.org/2001/XMLSchema.
3The xsi prefix maps to the XML Schema-instance namespace: http://www.w3.org/2001/XMLSchema-instance.

RenderX
6XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

2.2.1. Bidirectional Integrity

Among the many reasons XML has emerged as the dominant syntax for data management is its validation capability.
An XML Schema document uses hierarchies of parent-child relationships to define the rules for structuring data
within an XML instance, and theoretically these rules are enforced with zeal by validating parsers. For XML data
binding to prove successful, the same vigilant validation must transpire in some fashion within the object model—either
in the API calls or during the marshalling process—because the object model is mutable. Therefore, the criterion of
Bidirectional integrity reflects the extent to which the validation capability inherent in XML is preserved throughout
the XML data binding process.

The following categories of integrity are examined in this discussion:

• With regard to generation of the object model

• Validation of original schema

• Validation of source instance

• Target namespace resolution in the generated object model

• Preservation of relationships among elements, attributes and types within the ensuing object model—particularly
with varying levels of localization

• With regard to unmarshalling and object manipulation

• Preservation of the intent of XML Schema constructs

• With regard to marshalling

• Well-formedness of the generated instance

• Preservation of the changes made to the object model upon unmarshalling

• Mapping of the xsi prefix to the XMLSchema-instance namespace and specification of the xsi:schemaLocation
attribute

• Validity of target instance

Bidirectional integrity is the most critical point of comparison between JAXB and Castor, for this issue is at the heart
of the viability of XML data binding.

2.2.2. Usability

Usability is the most basic criterion for any technology, for robust sophistication is of little comfort to a frustrated user
at wit’s end. However, with XML binding tools, usability, or lack thereof, manifests itself in numerous forms. Therefore,
it was necessary to subdivide the usability criterion into the following categories:

• Generation of the Object Model. This addresses the usability of the process whereby an object model is generated
from an XML Schema document.

• Unmarshalling. This addresses the usability of the process whereby an XML instance document is validated against
an XML Schema and subsequently represented within the established object model.

RenderX
7XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

• Object Manipulation. This addresses the usability of the process whereby the object-model manifestation of an
XML instance can be manipulated to perform the familiar CRUD operations upon the data in the original document.4

• Marshalling. This addresses the usability of the process whereby an object representation of an XML instance
document (perhaps modified) is serialized into a valid XML instance.

The performance of each tool in the context of each of these categories contributes equally to the appraisal of its
overall usability.

3. Evaluation Results: JAXB
This portion of the discussion examines the performance of JAXB as an XML data binding tool and its usability by
client code.

3.1. Bidirectional Integrity
JAXB was observed for its faithfulness to the intent of the W3C XML Schema documents from the initial generation
of the object model through unmarshalling of the XML instance and marshalling of new XML instances from the un-
derlying object model.

3.1.1. Generation of the Object Model

JAXB tested both schemas and the instance document for well-formedness and validity and reported errors by throwing
standard Java exceptions. Subsequently, when the object model was generated from either mlb_primary.xsd or
mlb_locals.xsd, the objects were placed by default in a Java package structure reflecting the target namespace of the
schema. For example, the element called AmericanLeagueTeam found in mlb_primary.xsd with target namespace ht-
tp://www.xmlconference.org/xmldatabinding/jaxb/primary produced a Java artifact (more on this shortly) called
org.xmlconference.xmldatabinding.jaxb.primary.AmericanLeagueTeam. Such target namespace resolution was clever
and intuitive while requiring no customization.

JAXB took an interesting approach with regard to the structure of the object model. A set of Java interfaces representing
global elements and types and named identically was created in the org.xmlconference.xmldatabinding.jaxb.primary
package. Then in a subpackage called impl, JAXB generated concrete Java classes implementing those interfaces. In
the above example, the AmericanLeagueTeam element mapped to an interface with the same name implemented by a
class called AmericanLeagueTeamImpl in the impl subpackage.

Also of note is the relationship of this element with its type. The AmericanLeagueTeam element is of type American-
LeagueTeamType, which JAXB predictably represented as an interface called AmericanLeagueTeamType and an im-
plementation class called AmericanLeagueTeamTypeImpl. Moreover, the type declaration for AmericanLeagueTeamType
contains an occurrence of AmericanLeagueRosterType, and this relationship was represented in the object model
through composition. The following UML diagram conveys the relationships among the AmericanLeagueTeam,
AmericanLeagueTeamType, and AmericanLeagueRosterType interfaces and their respective implementations.

4CRUD is an acronym often used in the context of databases referring to the common operations of Create, Read, Update, and Delete.

RenderX
8XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

«interface»
org.xmlconference.xmldatabinding.primary.

AmericanLeagueTeamType

«interface»
org.xmlconference.xmldatabinding.primary.

AmericanLeagueTeam

«interface»
org.xmlconference.xmldatabinding.primary.

AmericanLeagueRosterType

org.xmlconference.xmldatabinding.primary.
impl.

AmericanLeagueTeamTypeImpl

org.xmlconference.xmldatabinding.primary.
impl.

AmericanLeagueTeamImpl

org.xmlconference.xmldatabinding.primary.
impl.

AmericanLeagueRosterTypeImpl

1
1

Figure 1. UML Diagram of Relationships among Element and Type Representations Generated
by JAXB from mlb_primary.xsd

Several key conclusions can be drawn from the diagram. First, JAXB constructs an object model by building relationships
among interface definitions rather than class definitions. Second, JAXB manifests the relationship of an element to its
type in an XML instance through inheritance in the object model—where the element is a subclass of its type. Finally,
and perhaps not so surprisingly, the hierarchical relationship between an XML element or type and elements contained
therein are represented in the object model through composition.

In the other schema, mlb_locals.xsd, the object model derived by JAXB was largely similar but with a remarkable ex-
ception. Indeed, as before, relationships were among generated interface definitions, and elements were related to types
through inheritance. However, local declarations were represented not through composition as is the case with their
global counterparts but rather through public inner classes and interfaces. The AmericanLeagueRosterType interface
was defined within the AmericanLeagueTeamType interface, and the AmericanLeagueRosterTypeImpl class was defined
within the AmericanLeagueTeamTypeImpl class. The following UML diagram conveys the same relationships depicted
above but among classes derived from mlb_locals.xsd.

RenderX
9XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

«interface»
org.xmlconference.xmldatabinding.primary.

AmericanLeagueTeamType

«interface»
org.xmlconference.xmldatabinding.primary.

AmericanLeagueTeam

«interface»
org.xmlconference.xmldatabinding.primary.

AmericanLeagueRosterType

org.xmlconference.xmldatabinding.primary.
impl.

AmericanLeagueTeamTypeImpl

org.xmlconference.xmldatabinding.primary.
impl.

AmericanLeagueTeamImpl

org.xmlconference.xmldatabinding.primary.
impl.

AmericanLeagueRosterTypeImpl

Figure 2. UML Diagram of Relationships among Element and Type Representations Generated
by JAXB from mlb_locals.xsd

The proliferation of inner classes mapping to local declarations in the original schema is less than ideal. Aside from
the inelegance and ambiguity of such an approach, public inner classes also lead to security vulnerabilities due to the
vagaries of the Java compiler [Kolawa]. It is clear that the behavior of JAXB with increased localization of declarations
should motivate XML analysts to produce schemas that minimize their occurrence.

3.1.2. Unmarshalling and Object Manipulation

The two schemas, however, showed no difference in the manner in which XML Schema constructs were represented
in the object model. The following sections detail the manner in which JAXB unmarshalled these constructs as found
in mlb.xml.

3.1.2.1. XML Schema Data Types

The schemas utilized for this discussion did not push the limits of XML Schema’s data typing capability because it
was not necessary for the business process. Only four data types were utilized, and the following table reflects the default
mapping of those to Java data types by JAXB.

Java Data TypeXML Schema Data Type

java.lang.Stringxs:string

java.math.BigIntegerxs:integer

java.math.BigIntegerxs:nonNegativeInteger

java.math.BigDecimalxs:decimal

Table 1. JAXB Data Type Mappings

The first entry in the table comes as no surprise, but the other entries are less than intuitive. Both the BigInteger and
BigDecimal classes are provided by the Java 2 Standard Edition (J2SE) API to represent numerical values to preclude

RenderX
10XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

the likelihood of overflow or loss of precision possible with Java primitive types like int and long or float and double
[J2SE API]. It is for this reason that these classes are so useful in applications with requirements for rigorous mathem-
atics. This capability, however, is not as useful in most cases for XML data binding. Java primitive types require fewer
resources and are easier to manipulate in code, and they will likely serve the majority of use cases where XML is directly
involved. Moreover, they can always be converted to the BigInteger, BigDecimal, or primitive wrapper classes as re-
quirements dictate—either through unmarshalling via JAXB customization or through business logic code at some
point after unmarshalling. Therefore, the default data-type mapping behavior of JAXB could be improved.

3.1.2.2. <xs:sequence>

As is commonly the case, all complex type declarations in the tested schemas contained <xs:sequence>. The element
declarations contained therein were represented through composition in the ensuing Java code and manipulated through
accessor and mutator methods (colloquially called getters and setters by OO developers). For example, consider the
type declaration for BattingStatisticsType, which contains an element declaration called BattingAverage of type
xs:decimal within a sequence. BattingStatisticsType was unmarshalled into a Java interface called BattingStatisticsType
containing methods called getBattingAverage() and setBattingAverage(). This behavior is intuitive and consistent.

3.1.2.3. <xs:choice>

Both schemas feature two instances of <xs:choice>. The first is a trivial case where the first child of the root element
MajorLeagueBaseball (of type MLBType) may be either the element Year of type xs:integer or the element Designator
of type xs:string. The second is more elaborate. The aforementioned complex type AmericanLeagueRosterType contains
a choice between either a sequence of one DesignatedHitter element and seven BenchPlayer elements or simply eight
BenchPlayer elements.

JAXB failed to reflect either choice accurately in the generated object model. With the trivial choice, the Java code
for MLBTypeImpl simply had mutators for Year and Designator where the code did not toggle between the current
and former choice if a change was made. It were as if the two elements were in sequence rather than a binary choice.

The other instance of <xs:choice> in the schemas fared no better. The generated code for AmericanLeagueRosterTypeImpl
did not demonstrate awareness of the choices, and therefore it certainly did not toggle between them no matter the
measures taken by client code. Thus, JAXB rendered the existence of the <xs:choice> ultimately meaningless.

3.1.2.4. <xs:simpleType> with Restrictions

Both schemas feature instances of <xs:simpleType> with different restrictions. The following table summarizes these
types as they are found in mlb_primary.xsd.5

Value(s)Restriction TypeBase TypeSimple Type Name

2005xs:minInclusivexs:integerYearType

2xs:fractionDigitsxs:decimalERAType

starter, relieverxs:enumerationxs:stringPitcherRoleType

left, right, switchxs:enumerationxs:stringBatsType

left, rightxs:enumerationxs:stringThrowsType

.[0-9]{3}|1.0006xs:patternjava.lang.StringPercentageType

Table 2. Simple Type Declarations

5In the case of mlb_locals.xsd, some of these types are local to their respective elements and are therefore anonymous.
6Regular expression representing a decimal with no leading digit and three digits to the right of the decimal point or the literal value 1.000. Possible
values include .331, .067, and 1.000. This type is used for such elements as BattingAverage.

RenderX
11XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

JAXB did not enforce any of these restrictions within the Java implementations corresponding to these type declarations.
Mutators allowed any values so long as they were of the correct Java data type (e.g. java.math.BigDecimal for ERAType).
This phenomenon is further complicated in the case of restriction by enumeration, for JAXB did not create constants
representing the possible values. Consequently, JAXB placed the burden on client code to avoid passing to the Java
representation of BatsType, for example, a value of both rather than the valid switch 7.

The pattern associated with PercentageType is replicated in mlb_locals.xsd via the <xs:union> construct to represent
a union of two regular expressions rather than the single one described above 8. Unfortunately, JAXB ignored
<xs:union> altogether as well.

3.1.2.5. <xs:complexType> with Extensions and with abstract="true"

As discussed, a global complex type has its own Java rendering subclassed by the Java rendering of the associated
element declaration. Interestingly, the same is true for local complex type declarations as well. For example, in
mlb_locals.xsd, the element AmericanLeagueTeam has its type locally declared, yet a Java interface and implementation
combination was created for this type called AmericanLeagueTeamType—exactly as with mlb_globals.xsd. It would
seem that JAXB generates Java artifacts for locally declared types and names them by appending Type to the associated
element name. The same inheritance relationship was maintained as well.

Extensions of complex types worked very well in JAXB. The base complex type was manifested as Java artifacts,
which then were subclassed by the complex-type representations that derived from them. For example, in mlb_glob-
als.xsd, BaseRosterType is extended by AmericanLeagueRosterType (or its local anonymous equivalent in mlb_loc-
als.xsd), and the same is exactly true of their corresponding Java representations. As a result, the data and behavior
associated with the BaseRosterType implementation are completely inherited by the AmericanLeagueRosterType im-
plementation.

It should be noted that both BaseRosterType and PlayerType have abstract="true" in both schemas. However, neither
the Java class BaseRosterTypeImpl nor PlayerTypeImpl is declared an abstract class. Therefore, because each class is
concrete and declared to have public access, it is possible for client Java code to violate the spirit of the schema from
whence it came. This is hardly ideal however unlikely it may be that client code will be instantiating these classes
directly.

3.1.2.6. Cardinality for Elements Beyond the Default Value of 1

In both schemas, there are three cases of explicit cardinality. One was mentioned before—the choice involving seven
or eight BenchPlayer elements within the AmericanLeagueRosterType element. In addition, the AmericanLeagueTeam
element must appear fourteen times in a valid instance, and the NationalLeagueTeam element which must appear sixteen
times in a valid instance. Both are children of the root element MajorLeagueBaseball.

JAXB failed to enforce cardinality effectively in both cases. In the case of the MajorLeagueBaseball element, the
corresponding Java class maintained instances of java.util.ArrayList to store instances of the AmericanLeagueTeamImpl
and NationalLeagueTeamImpl classes. Yet the MajorLeagueBaseballImpl class performed no validation checks to
ensure that the number of instances in the respective lists remained within the upper bound. As a result, client code
was able to add items to the respective lists without any regard for the constraints defined by the schema.

3.1.2.7. Atypical Data Types

The only atypical XML Schema data type found in either schema is <xs:nonNegativeInteger>, which is used for such
elements as HomeRuns and RBI. JAXB simply mapped this to java.math.BigInteger with no checks on inputs to
mutators to verify that the values are indeed non-negative. Therefore, it was possible to set a value for HomeRuns to
be -25, for example. This behavior also violated the spirit of the schema and placed the production of a valid XML
instance in the trust of the client.

7It is common in the vernacular of baseball to list a switch hitter as one who bats “both.”
8The two expressions are .[0-9]{3} and the literal 1.000, which are combined in the regular expression found in mlb_primary.xsd.

RenderX
12XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

3.1.2.8. Attributes and <xs:attributeGroup>

Attribute declarations were represented as private data members within those Java classes representing the elements
containing them, and these members were manipulated through accessors and mutators—albeit with the flaws in enforcing
data type restrictions described previously. For example, the commissioner attribute of type xs:string belonging to the
MajorLeagueBaseball element could be accessed through the getCommissioner() method in the MajorLeagueBaseball
interface.

With regard to <xs:attributeGroup>, JAXB simply handled the attributes contained therein as if they were declared
separately within the containing element. The grouping of the name and manager attributes within the American-
LeagueTeam and NationalLeagueTeam elements in mlb_primary.xsd was handled exactly as if each were defined in-
dividually therein.

3.1.3. Marshalling

JAXB marshalled the Java object model into a well-formed XML instance document that preserved the hierarchies
and sequences of elements found in the original document. Moreover, changes made to the Java object model repres-
entation of the original XML instance were in fact reflected in the new instance. The declaration of the XMLSchema-
instance namespace and associated mapping to the conventional xsi prefix did not happen by default. A setting was
applied in code in order to map xsi to the XMLSchema-instance namespace and specify the value of the xsi:schema-
Location attribute.

Given its conspicuous lack of rigor in validating changes made to the object model, it should come as no surprise that
JAXB did not produce a valid XML instance. If, for example, a change to the alternate was made within even the
trivial <xsd:choice> construct, JAXB did not toggle the choices effectively and did not yield a valid instance.

Furthermore, JAXB-generated code did not validate data against faceted restrictions on simple types. Invalid data were
permitted into the object model and ultimately into the derived instance. This negligence had even greater significance
in combination with the use of the BigDecimal class. Consider the BattingAverage element and associated JAXB class.
Upon unmarshalling, all the values for BattingAverage were denoted by java.lang.String representations of the corres-
ponding BigDecimal instances. The pattern facet restricting the appearance of these decimal values was never enforced.
Therefore, upon marshalling, all of the BattingAverage data—even those unchanged from the original instance—were
corrupted. Thus, an original BattingAverage value of .287 remaining otherwise unchanged during object manipulation
became 0.287 in the generated instance, which is invalid according to the pattern facet. A much more gross violation
occurred when setting the value of a BattingAverage element with a BigDecimal object instantiated with a Java double
primitive as permitted by the BigDecimal API. An attempt to set a BattingAverage value to .299 with a double produced
the following value in the new XML instance: 0.298999999999999988009591334048309363424777984619140625.
Although it may be argued that using the pattern facet with xs:decimal is rare, such a glaring violation is intolerable
and one that could easily be resolved.

Finally, the problems JAXB had with cardinality provided yet another basis for invalid instances. It was possible to
add AmericanLeagueTeam and NationalLeagueTeam objects in code well beyond the constraints set by the cardinalities
defined in the schemas—as if the upper bounds were both defined to be unbounded. These overflows were permitted
in the final result which left MajorLeagueBaseball invalid.

3.2. Usability
JAXB was observed for its usability by developers seeking to leverage the power of XML data binding. In particular,
usability was assessed in four areas: generation of the object model, unmarshalling, code manipulation, and marshalling.

RenderX
13XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

3.2.1. Generation of the Object Model

JAXB9 generates a Java object model from an XML Schema document only through a command-line interface. The
command is the following:

xjc [-options ...] <schema>

where the list of options is available in the Java Web Services Tutorial available from Sun [The Java Web Services
Tutorial]. The JAXB distribution includes scripts for executing this command (xjc.bat for Windows and xjc.sh for
Unix), but such an approach is not portable. Far preferable would be the distribution of an Ant task that executes an
equivalent of the above command 10. Though it is not readily apparent from The Java Web Services Tutorial, JAXB
does indeed ship with an Ant task mapping to the class com.sun.tools.xjc.XJCTask [Using XJC with Ant].

There is also no direct programmatic interface to JAXB’s code generation capability. It was possible for the purposes
of this discussion to create one, but such an effort demands at least intermediate experience with Java programming
and Java artifacts like JAR files 11. It is a significant mark against the usability of JAXB that developers do not have
an obvious choice between command-line and programmatic interfaces.

JAXB allows customization of its default behavior through two means [The Java Web Services Tutorial]. One is by
means of XML Schema annotations, which contain proprietary JAXB XML tags defining customization of default
binding behavior. This is a very poor approach because it couples the schema to JAXB. The better approach is to create
an XML file, with a .xjb extension by convention, that specifies how default behavior is to be overridden. The degree
of customizability is reasonable, but it lacks the real fine-grained control developers crave.

3.2.2. Unmarshalling

Unmarshalling an XML instance was reasonably straightforward with JAXB, but it did require multiple steps. Two
classes were required from the javax.xml.bind package: JAXBContext and Unmarshaller. A context was required for
handling classes in a certain package root (e.g. org.xmlconference.xmldatabinding.jaxb.primary), and the Unmarshaller
instance was obtained from the context. The Unmarshaller then read the XML file and returned an Object reference
to the root element interface—in this case org.xmlconference.xmldatabinding.jaxb.primary.MajorLeagueBaseball.
Thus, a cast was required to the appropriate type. Awkward and costly in terms of performance, casts should be all but
nonexistent in elegant OO code. Moreover, javax.xml.bind.JAXBException and java.io.FileNotFoundException demanded
handling. The proliferation of checked exceptions is less than desirable as well, but the effect was mitigated by their
being standard Java exceptions.

3.2.3. Object Manipulation

CRUD operations with the JAXB object model were rather intuitive. Creation of new objects to add to the model and
ultimately to the marshalled document was accomplished through the org.xmlconference.xmldatabinding.jaxb.primary.Ob-
jectFactory class produced by the code generation process. Despite the name, the ObjectFactory was most certainly
not an implementation of any of the Factory Patterns articulated by the Gang of Four 12. It did, however, have the
similar aim of decoupling client code from implementation details. ObjectFactory contained create methods for all of
the interface types—representing element and type declarations—defined in the object model. For example, Object-
Factory contained such methods as createAmericanLeagueTeam() and createAmericanLeagueTeamType() returning
instances of the AmericanLeagueTeam and the AmericanLeagueTeamType interfaces respectively. As a result, the
client remained blissfully unaware of the actual implementation classes—AmericanLeagueTeamImpl and American-
LeagueTeamTypeImpl.

9See Appendix 3 for code samples.
10Ant [http://ant.apache.org/] is an open-source build tool that enjoys tremendous popularity in the Java community.
11Java ARchive files are libraries of executable Java code.
12The Gang of Four is the colloquial name for Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. They are the authors of Design
Patterns: Elements of Reusable Object-Oriented Software, the seminal text on OO design and development. The creational patterns described therein
are Abstract Factory, Builder, Factory Method, Prototype, and Singleton.

RenderX
14XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://ant.apache.org/
http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

From a code quality perspective, the creation paradigm administered by ObjectFactory left much to be desired. Because
all the classes in the impl package were declared public, JAXB allowed client code the option to bypass ObjectFactory
altogether and create concrete instances of its own accord. To do so would produce the very dependencies that Object-
Factory is in place to avoid. As a result, JAXB demonstrated the potential to allow inexperienced developers to write
code that will prove rigid over time 13.

Greater potential for rigidity arose from a curious violation of the venerated OO principle of encapsulation. Sequences
of elements with maximum cardinality greater than one were represented, as mentioned before, as java.util.List objects.
That is an implementation detail, yet it was exposed through the public API. For example, AmericanLeagueRoster had
a method called getAmericanLeaguePitcher(), which returned a List of AmericanLeaguePitcher objects. Absence of
cardinality validation aside, this was an unacceptable level of coupling between client code and the AmericanLeagueR-
oster interface. Should the implementation change, countless client modules will be forced to change as well. JAXB
should have gone farther toward greater abstraction through recognition of the benefits of encapsulation.

Read and update functions were accomplished through the interface representing the root element. In this case, that
interface was MajorLeagueBaseball. Beginning from the root element interface, intuitive accessor methods enabled
client code to retrieve information from the unmarshalled XML document. Mutator methods existed for updating data
as well, although they did so in a manner that belied XML’s rich validation capability.

Deletes are not generally applicable with XML data binding. The only exception arises with collections whose contents
may be altered—implemented by JAXB with the aforementioned List objects. The public API for List provides a
method called removeAll(), which purges the collection of items matching those in another collection, and overloaded
remove() methods, which purge individual items in the collection. Aside from the danger of exposing the implementation
details to the client, JAXB also did not validate the results of these method calls upon marshalling.

3.2.4. Marshalling

Marshalling an object model into an XML document is accomplished through the marshal() method of the
javax.xml.bind.Marshaller class, an instance of which was obtained from the JAXBContext. Once the MajorLeague-
Baseball instance was modified to the satisfaction of the business requirements, it was passed to the Marshaller instance
along with a java.io.FileInputStream object. The result was a well-formed XML instance with the proper sequencing
of elements, but as discussed at length previously, the document could not be trusted to be valid.

By default, Marshaller produces an XML instance that lacks human-readable formatting and any mention of the asso-
ciated schema. To that end, it was necessary to set two properties of the Marshaller instance—Mar-
shaller.JAXB_FORMATTED_OUTPUT to java.lang.Boolean.TRUE and Marshaller.JAXB_SCHEMA_LOCATION to
a java.lang.String value representing the desired value for the xsi:schemaLocation attribute 14. The performance cost
for creating indentation in the output was found to be minimal and well worth the gain in readability.

Altogether, the marshalling process required only six lines of code including the setting of the properties. It is good
that Marshaller does not apply indentation by default and allows the developer to accept the performance loss, but it
would seem that applying the same value for xsi:schemaLocation or xsi:noNamespaceSchemaLocation (should either
be present) as the original XML instance would make for more intuitive default behavior.

3.3. Next Steps
With the evaluation of Sun’s JAXB XML data binding tool complete for the purposes of this discussion, it is now time
to perform the same rigorous analysis on its leading open-source counterpart, Castor.

13The term rigid comes from Robert C. Martin’s excellent text Agile Software Development: Principles, Patterns, and Practices. According to
Martin, rigidity is the tendency for changes in one software module to force changes in its client modules, which themselves force changes in their
client modules, and so on until the refactoring effort becomes far more arduous than originally expected [Martin].
14The Marshaller class also has a Marshaller.JAXB_NO_NAMESPACE_SCHEMA_LOCATION property.

RenderX
15XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

4. Evaluation Results: Castor
This portion of the discussion examines the performance of Castor as an XML data binding tool and its usability by
client code. Comparisons to JAXB are made throughout, and the relative strengths and weaknesses of both are assessed.

4.1. Bidirectional Integrity
As with JAXB, Castor was observed for its faithfulness to the intent of the W3C XML Schema documents from the
initial generation of the object model through unmarshalling of the XML instance and marshalling of new XML instances
from the underlying object model. Integrity comparisons of the two tools pervade the discussion.

4.1.1. Generation of the Object Model

Like JAXB, Castor tested both schemas and the instance document for well-formedness and validity and reported errors
with both by throwing Java exceptions. This was as expected. Where Castor differed from JAXB is the manner in
which package names for generated classes were defined, for the burden was entirely the developer’s. Developers
would be better served if Castor took the JAXB approach—declaring package names according to the target namespace
of the schema by default and allowing developers to override as necessary.

Castor also produced a far different structure for its generated object model. For every global element and type declar-
ation, two classes were created. One was a Java representation of the element or type analogous to that produced by
JAXB. The other was a Descriptor class containing the metadata for binding the XML representation to the Java
one—including validation. For example, the aforementioned AmericanLeagueTeam element in mlb_primary.xsd was
rendered into both an org.xmlconference.xmldatabinding.castor.primary.AmericanLeagueTeam and org.xmlconfer-
ence.xmldatabinding.castor.primary.AmericanLeagueTeamDescriptor class. Developers are unlikely to interact with
a Descriptor class directly, so it is less than ideal that they were publicly accessible. Moreover, while there were two
public concrete classes for each global declaration, Castor, unlike JAXB, did not generate any interfaces. This constrained
the object model and limited the testability of the generated classes.

With regard to the relationship of this element with its type as manifested in the object model, AmericanLeagueTeam
subclassed AmericanLeagueTeamType, which had a compositional relationship with AmericanLeagueRoster. This in
turn subclassed AmericanLeagueRosterType. The following UML diagram conveys the relationships among the
AmericanLeagueTeam, AmericanLeagueTeamType, and AmericanLeagueRosterType classes:

RenderX
16XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

org.xmlconference.xmldatabinding.primary.
AmericanLeagueTeamType

org.xmlconference.xmldatabinding.primary.
AmericanLeagueTeam

org.xmlconference.xmldatabinding.primary.
AmericanLeagueRoster

1 1

org.xmlconference.xmldatabinding.primary.
AmericanLeagueRosterType

Figure 3. UML Diagram of Relationships among Element and Type Representations Generated
by Castor from mlb_primary.xsd

While there is large similarity to JAXB, the distinction is clear. The simplicity of the UML diagram derives from the
lack of abstractions. In fact it is interesting to note that Castor built relationships among concrete classes--and more
specifically, among subclasses rather than superclasses. This is hardly a good example of OO-design best practices.

In the other schema, mlb_locals.xsd, the object model was smaller because there are fewer global declarations to render
into Java objects. Castor avoided the use of inner classes to represent the local declarations; rather, the code associated
with them was folded into the container class. For example, the code found in org.xmlconference.xmldatabind-
ing.castor.primary.AmericanLeagueTeamType was found instead in the element class org.xmlconference.xmldatabind-
ing.castor.locals.AmericanLeagueTeam when generating code from mlb_locals.xsd. As the following UML diagram
illustrates, this simplifies matters greatly.

RenderX
17XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

org.xmlconference.xmldatabinding.primary.
AmericanLeagueTeam

org.xmlconference.xmldatabinding.primary.
AmericanLeagueRoster

1 1

Figure 4. UML Diagram of Relationships among Element and Type Representations Generated
by Castor from mlb_locals.xsd

Despite the continued insistence upon details over abstractions, this strategy was far superior to JAXB’s, for it avoided
the awkwardness and security vulnerabilities associated with inner classes.

Finally, it is important to recognize a critical distinguishing feature of Castor from JAXB. Beneath the top-level
package, Castor created a package called types. Contained therein were classes representing all simple-type declarations
restricted with xs:enumeration. Consequently, for both schemas, the types subpackage contained classes called BatsType,
RoleType, and ThrowsType (each paired with a Descriptor class as described above) 15. It became clear that the purpose
of these classes was to enforce the validation constraints imposed by the respective enumeration constructs in the parent
schema. While the function of these classes will be detailed shortly, this was the first evidence of Castor’s superior
validation capability.

4.1.2. Unmarshalling and Object Manipulation

Analysis of the unmarshalling strategy of Castor revealed similarities to JAXB but numerous key differences as well.
The following sections detail the manner in which Castor unmarshalled these constructs as found in mlb.xml.

4.1.2.1. XML Schema Data Types

The mapping of XML Schema data types to Java data types was largely the same but with an important difference.

15In the case of mlb_locals.xsd, the BatsType and RoleType classes were created from anonymous simple-type declarations for the elements Bats
and Role respectively. Apparently, Castor named the classes by appending Type to the containing element name.

RenderX
18XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

Java Data TypeXML Schema Data Type

java.lang.Stringxs:string

int primitivexs:integer

int primitivexs:nonNegativeInteger

java.math.BigDecimalxs:decimal

Table 3. Castor Data Type Mappings

Where Castor differed was in the use of the Java primitive type int to represent the xs:integer and xs:nonNegativeInteger
types. This default behavior is more effective because primitives require fewer resources than Java objects and are
easier to manipulate in code, and they will likely serve the majority of use cases where XML is directly involved.
Moreover, an int can be converted into a Java object as requirements dictate—either through unmarshalling via Castor
customization or through business logic code at some point after unmarshalling. Therefore, this is preferred to the
JAXB approach. Of course, the mapping of xs:decimal to BigDecimal renders Castor vulnerable to the same problems
as JAXB.

4.1.2.2. <xs:sequence>

The behavior of Castor is identical to that of JAXB with regard to the modeling of <xs:sequence>. The element declar-
ations contained within a sequence were represented through composition in the ensuing Java code and manipulated
through accessor and mutator methods.

4.1.2.3. <xs:choice>

As mentioned previously, the schemas feature two instances of <xs:choice>. Unlike JAXB, Castor took significant
measures to address this construct—albeit incompletely. The simpler choice, where the first child of the root element
MajorLeagueBaseball (of type MLBType) may be either Year (of type xs:integer) or Designator (of type xs:string),
was represented by Castor through a Java class of its own called MLBTypeChoice. An instance of this class was obtained
through the getMLBTypeChoice() method of the MajorLeagueBaseball class, and it managed the choice between the
two elements with two mutators. MLBTypeChoice had a method called deleteYear(), which informed the class of the
desire to toggle from rendering the Year element to rendering the Designator element. It was already clumsy to have
client code perform the toggle, but if that was to be the modus operandi, it is inexplicable that there was no comparable
deleteDesignator() method. As a result, Castor could shift the choice from Year to Designator, but it was incapable of
effecting the reverse.

With the more complex choice, where the complex type AmericanLeagueRosterType contains a choice between either
eight BenchPlayer elements or a sequence of one DesignatedHitter element and seven BenchPlayer elements, Castor
created two classes to address these cases. One was AmericanLeagueRosterTypeChoice, which had a method called
addBenchPlayer() that performed validation to ensure the size of the container of BenchPlayer elements did not exceed
eight. The second class was AmericanLeagueRosterTypeChoiceSequence. It also had an addBenchPlayer() method,
which performed validation to ensure instead that the size of the container of BenchPlayer elements did not exceed
seven, and a setDesignatedHitter() method. Though the mechanisms were in place to validate the choice between the
two sets of elements, there was nothing analogous to the deleteYear() method to explicitly toggle between the two
choices. As a result, the Castor machinery was unable to make sense of the developer’s desired choice. The typical
result was report of a validation error—too many BenchPlayer instances in either case—when there should have been
none.

4.1.2.4. <xs:simpleType> with Restrictions

As a reminder, the following table summarizes the instances of <xs:simpleType> with different restrictions as they are
found in mlb_primary.xsd 16.

16In the case of mlb_locals.xsd, some of these types are local to their respective elements and are therefore anonymous.

RenderX
19XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

Value(s)Restriction TypeBase TypeSimple Type Name

2005xs:minInclusivexs:integerYearType

2xs:fractionDigitsxs:decimalERAType

starter, relieverxs:enumerationxs:stringPitcherRoleType

left, right, switchxs:enumerationxs:stringBatsType

left, rightxs:enumerationxs:stringThrowsType

.[0-9]{3}|1.00017xs:patternjava.lang.StringPercentageType

Table 4. Simple Type Declarations

Overall, Castor achieved far greater success in validating these constructs than JAXB, but there remained a delta
between Castor’s performance and the rigorous validation endemic to XML. Castor did indeed enforce the minimum
value for YearType. Also, Castor went a great deal farther than JAXB at handling enumerations. Classes devoted to
enumeration processing were maintained in the aforementioned types subpackage, and these classes contained
identically typed Java constants representing the enumeration values. For example, the BatsType simple type was
represented as a class called BatsType with static constants called LEFT, RIGHT, and SWITCH—all of type BatsType
as well. Where this had tremendous significance was with regard to the mutators whose signatures demanded BatsType
objects. In order to set the value of Bats (the element whose type is BatsType) for such an element as FirstBaseman,
the argument to the method had to be of type BatsType. This shifted the validation burden from client code to Castor
in that it guaranteed that only one of the enumerated values would be passed. Castor used the same approach for the
other enumerations as well.

Despite its success with the validation of those restrictions, Castor disappointed with regards to the xs:fractionDigits
and the xs:pattern restrictions. It ignored them altogether and thus performed no better than JAXB. Moreover, Castor
was just as lethargic in enforcing the <xs:union> construct associated with PercentageType replicated in mlb_locals.xsd.

4.1.2.5. <xs:complexType> with Extensions and with abstract="true"

Much has been discussed already regarding the rendering of global complex types into Java code by Castor. In a
manner similar to JAXB, each global complex type had its own Java representation that served as the superclass of
the Java representation of the associated element declaration. The key difference was the absence of abstraction through
interfaces. In contrast, Castor injected the code related to anonymous local complex types inside the code related to
the associated element declaration.

Extensions of complex types worked in Castor exactly as in JAXB with regard to global type declarations. The base
complex type was manifested as a Java class, which was subsequently subclassed by the complex-type representations
that derived from them. Localization, however, was a factor in how this was achieved. For example, in mlb_globals.xsd,
the type declaration BaseRosterType is extended by the type declaration AmericanLeagueRosterType, and the relationship
between the corresponding Java representations was exactly parallel. In mlb_locals.xsd, the type declaration BaseRo-
sterType is extended by the anonymous local type declaration for the AmericanLeagueTeam element. In this case, it
was the AmericanLeagueTeam class that subclassed the BaseRosterType class. In both cases, the data and behavior
associated with the BaseRosterType implementation were completely and accurately inherited. It was interesting to
find the Java manifestation of an XML Schema element subclassing the Java manifestation of an XML Schema super
type.

Castor did a much better job than JAXB at recognizing that BaseRosterType and PlayerType are declared abstract in
both schemas. Both implementations were declared to be abstract Java classes, and consequently, it was impossible
for client code to instantiate these directly. This was very much in the spirit of the schemas from whence these objects
came.

17Regular expression representing a decimal with no leading digit and three digits to the right of the decimal point or the literal value 1.000. Possible
values include .331, .067, and 1.000. This type is used for such elements as BattingAverage.

RenderX
20XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

4.1.2.6. Cardinality for Elements Beyond the Default Value of 1

As mentioned in the JAXB discussion, each schema features two cases of explicit cardinality. One is the choice within
BaseRosterType between seven or eight BenchPlayer elements as described previously. The other applies to the
AmericanLeagueTeam element, which must appear fourteen times in a valid instance, and the NationalLeagueTeam
element, which must appear sixteen times in a valid instance. Both of these are children of the root element Major-
LeagueBaseball.

Castor enforced these cardinal values at two points. The first of these was during interaction with the object model.
Each element with multiple cardinality was maintained in a java.util.Vector container within the parent Java represent-
ation, and checks were in place to ensure the size of the Vector never exceeded the maximum cardinality. Consider
once again the MajorLeagueBaseball and AmericanLeagueTeam elements. The corresponding MajorLeagueBaseball
class held a Vector of AmericanLeagueTeam elements. Moreover, the API for MajorLeagueBaseball had an addAmer-
icanLeagueTeam() method, which was written by Castor to throw a java.lang.IndexOutOfBoundsException if an attempt
was made to call the method when the Vector was at the maximum capacity of fourteen.

Interestingly, the MajorLeagueBaseball API also contained methods called removeAllAmericanLeagueTeam(), which
emptied the Vector of AmericanLeagueTeam elements, and another method called removeAmericanLeagueTeam(),
which removed an AmericanLeagueTeam instance at a given index within the Vector. While such methods are necessary
for the flexibility of modifying the unmarshalled XML instance, they also expose the model to the risk of violating the
rules for minimum cardinality of the elements. The MajorLeagueBaseball class could not oblige client code to meet
the minimum for AmericanLeagueTeam instances. Indeed, client code should be free to purge the container entirely
and replace the contents therein at its leisure. Furthermore, there is technically no violation until an attempt is made
to marshal MajorLeagueBaseball with an insufficient number of AmericanLeagueTeam instances. Hence, the challenge
of enforcing minimum cardinality is not trivial.

To understand how Castor tackled this challenge, recall that for each Java class representing an element or type in the
schema, Castor generated a companion Descriptor class charged with, among other things, enforcing validation upon
marshalling. This was precisely where Castor enforced minimum cardinality—albeit with some academic differences
related to localization. In mlb_globals.xsd, the MajorLeagueBaseball element is defined to be of type MLBType, which
includes the AmericanLeagueTeam element and is represented with the Java classes MLBType and MLBTypeDescriptor.
In mlb_locals.xsd, MajorLeagueBaseball is defined to be of an anonymous type which includes the AmericanLeagueTeam
element and is represented within the Java classes MajorLeagueBaseball and MajorLeagueBaseballDescriptor. In
either case, the Descriptor classes contained code checking for the minimum cardinality of elements. When a violation
occurred, Castor threw a proprietary exception to the caller. Although the proliferation of checked exceptions—partic-
ularly proprietary ones—is problematic, the rigor of validation was impressive.

4.1.2.7. Atypical Data Types

As a reminder, the only atypical XML Schema data type found in either schema is xs:nonNegativeInteger, which is
used for such elements as HomeRuns and RBI. Castor simply mapped this to an int primitive with no checks on inputs
to mutators to verify that the values were indeed non-negative. Therefore, while the default data-type mapping strategy
was different from JAXB's, the validation outcome was no different.

4.1.2.8. Attributes and <xs:attributeGroup>

Castor also performed exactly as JAXB with regard to attributes and attribute groups. Attribute declarations were
represented as private data members within those Java classes representing the elements containing them, and these
members were manipulated through accessors and mutators—albeit with the flaws in enforcing some data type restrictions
as described previously.

With regard to <xs:attributeGroup>, JAXB simply handled the attributes contained therein as if they were declared
separately within the containing element. The grouping of the name and manager attributes within the American-

RenderX
21XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

LeagueTeam and NationalLeagueTeam elements in mlb_primary.xsd was handled exactly as if each were defined in-
dividually therein.

4.1.3. Marshalling

Like JAXB, Castor marshalled the Java object model into a well-formed XML instance document that preserved the
hierarchies and sequences of elements found in the original document. Moreover, changes made to the Java object
model representation of the original XML instance were in fact reflected in the new instance. However, the declaration
of the XMLSchema-instance namespace and associated mapping to the conventional xsi prefix did not happen by default.
A setting must be applied in code in order to map xsi to the XMLSchema-instance namespace and specify the value of
the xsi:schemaLocation attribute.

Although it proved far superior in many ways to JAXB in its rigor in validating changes made to the object model,
Castor could not always be counted upon to produce a valid XML instance. Castor did indeed excel in the enforcement
of cardinality and in managing enumerations and boundary values with the minInclusive restriction. To the extent to
which a schema contains only these sorts of constraints, a marshalled instance will likely be valid. Recall, however,
that Castor’s performance in handling the <xs:choice> construct was suspect at best. Moreover, while Castor avoided
the vagaries of Java’s BigInteger class, it still fell prey to those of the BigDecimal class as JAXB did. The failure to
resolve the pattern facet in concert with the BigDecimal class did not escape Castor either. Yet for all its shortcomings,
it is quite clear that Castor far surpassed JAXB in its faithfulness to the intent of XML Schema constructs.

4.2. Usability
Like JAXB, Castor also was observed for its usability by developers seeking to leverage the power of XML data
binding. In particular, usability was assessed in four areas: generation of the object model, unmarshalling, code manip-
ulation, and marshalling. Usability comparisons of the tools in each category pervade the discussion.

4.2.1. Generation of the Object Model

Castor18 generates a Java object model from an XML Schema document through the execution of a particular Java
class called org.exolab.castor.builder.SourceGenerator. Therefore, code can be generated either at the command-line
interface or in code. The command is the following:

java org.exolab.castor.builder.SourceGenerator [-options ...]

where the list of options is available in the Castor documentation [Castor API]. Because it is really a Java runtime
command, the command-line interface demands an understanding of how Java bytecode is executed. Even Java de-
velopers, who are almost always spared the details of Java execution by their development environments, may require
a refresher on how to do this. A JAR command like the one provided by JAXB, or an Ant script with a built-in target
to accomplish the same, would be preferable.

Still, SourceGenerator does provide an intuitive programmatic interface with which developers may generate the object
model. A simple call to one of several overloaded generateSource() methods produced an object model from a schema.
The API for the class also has numerous methods for configuring the code-generation process. Among the most notable
of these are setNamespacePackageMapping(), which allows client code to define a mapping of XML namespaces to
Java packages, and setEqualsMethod(), which compels Castor to override the equals() method inherited by each gen-
erated class from Object. Doing so is recommended for all Java classes, regardless of whether they are created by de-
velopers or tools. Still, advanced Java developers are aware that overriding the equals() method should be coupled
with overriding the hashCode() method also inherited from Object, yet Castor does not provide a comparable means
for doing so. This oversight is really just academic since it is a rare use case that demands the storage of XML binding
objects in hashtables, but it would appear an oversight nonetheless.

18See Appendix 4 for code samples.

RenderX
22XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

Castor customization is also available through two other means: a Java properties file and a proprietary XML file
similar to the binding files utilized by JAXB 19. Both allow fine-grained customization down to the class level.

4.2.2. Unmarshalling

Unmarshalling an XML instance was very simple with Castor. Client code has two choices, each with its own advantages
and disadvantages. One approach is to call unmarshal(), a static method which Castor generated for every Java class
representation of an element or type declaration, on the class representing the root element. Thus simply calling unmar-
shal() on the MajorLeagueBaseball class unmarshalled the entire XML instance. It required only a single line of code
but left no room for configuration.

The other approach is to call unmarshal() on an instance of the Unmarshaller class. This instance can be configured
through various API calls and is far better suited to advanced users, who may be willing to accept more verbose and
esoteric code in exchange for a greater degree of sophistication [Castor API]. Among the configuration possibilities
are whitespace preservation and validation.

Both approaches, however, share a common disadvantage. They throw proprietary exceptions upon error. This is a
very subtle but all too common violation of the principle of encapsulation, for client code forced to address these ex-
ceptions becomes coupled to Castor. The burden is on developers to make a critical design decision—either to provide
a layer of abstraction between Castor and client code or to do nothing with the hope that the increased coupling does
not make change more arduous than it need be should the circumstance arise.

4.2.3. Object Manipulation

Castor takes a patently different approach to CRUD operations with its object model than JAXB. Creation of new objects
to add to the model and ultimately to the marshalled document is accomplished primarily through creating instances
with the new operator in a manner familiar even to the most novice Java developer, and this new object is populated
with data through API calls on the newly created instance 20.

The manner in which Castor managed collections of objects is particularly noteworthy for its advantages and disadvant-
ages. Unlike JAXB, which exposed its internal use of java.util.List to its clients, Castor exposed only generic collections
and offered a distinct advantage over its counterpart. For example, the MajorLeagueBaseball class had one method
called getAmericanLeagueTeam(), which returned an array of AmericanLeagueTeam objects, and another method
called enumerateAmericanLeagueTeam(), which returned a java.util.Enumeration of AmericanLeagueTeam objects.
Moreover, because arrays and Enumerations are immutable, additions were made to collections through add methods
like the addAmericanLeagueTeam() method on MajorLeagueBaseball. Therefore, Castor kept the internal details of
the collection (which is a java.util.Vector as mentioned before) hidden. This strategy decoupled the implementation
from the client and thus insulated the client from changes therein.

Where Castor fell short of JAXB was in the collection mechanism itself, for the use of Vector is a poor choice. According
to its API, each Vector method is declared to be synchronized, a Java keyword mandating that only a single thread
execute the method at a time [J2SE API]. Synchronization incurs huge runtime overhead and is often unnecessary. It
is for this reason that experienced Java developers often use java.util.ArrayList, which runs unsynchronized, when
they require a flexible, linear collection mechanism. Recall that JAXB utilizes ArrayList for its collections, and these
are certain to perform with far greater performance. It is true that Castor can be customized to utilize other Java collec-
tions like ArrayList, but its use of Vector is a weak default choice.

Similar to JAXB, Castor enabled read and update functions through the class representing the root element—in this
case MajorLeagueBaseball. Beginning from the root element interface, intuitive accessor methods enabled client code
to retrieve information from the unmarshalled XML document. Mutator methods existed for updating data as well,

19Java properties files simply contain a collection of key-value pairs such as org.exolab.castor.builder.equalsmethod=true, which is equivalent to
calling setEqualsMethod(true) on SourceGenerator in code.
20Castor also has an ObjectFactory class similar to JAXB’s, but it is of little use to all but the most sophisticated users.

RenderX
23XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

and these were capable of performing some validation on such constructs as cardinality and enumerations while failing
on others like patterns.

Deletes are not generally applicable with XML data binding. The only exception arises with collections whose contents
may be altered. Castor provided remove methods to that end. For example, the MajorLeagueBaseball class had methods
called removeAllAmericanLeagueTeam(), which purged the entire collection, and removeAmericanLeagueTeam(),
which purged a single AmericanLeagueTeam instance at a specified point in the collection. These operations were ul-
timately validated upon marshalling as specified earlier.

4.2.4. Marshalling

Just as there were two alternative mechanisms for unmarshalling an XML instance, Castor offered two parallel altern-
atives for marshalling an object model into an XML instance, and each had its own advantages and disadvantages.
One approach was to call the marshal() method, which Castor generated for every class representation of an element
or type declaration, on the class representing the root element. Thus simply calling marshal() on an instance of the
MajorLeagueBaseball class with an instance of java.io.FileWriter marshalled the entire XML instance. It required
only a few lines of code but left no room for configuration.

The other approach was to call marshal() on an instance of the Marshaller class. This instance could be configured
through various API calls and is far better suited to advanced users, who may prefer more verbose and esoteric code
in exchange for a greater degree of sophistication. Among the configuration possibilities are insertion of the XML
declaration, insertion of the schemaLocation attribute (or noNamespaceSchemaLocation attribute), and validation.

Also parallel with the unmarshalling mechanisms was the proclivity for proprietary checked exceptions in the marshalling
code. Once more Castor betrays the principle of encapsulation and compels developers to choose between providing
their own layers of abstraction or doing nothing and hoping that nothing changes.

4.3. Next Steps
With the evaluation of JAXB and Castor complete for the purposes of this discussion, a summary comparison of the
tools and suggestions for further research are in order.

5. Summary and Concluding Remarks
XML data binding offers the possibility of seamlessly integrating XML hierarchies with OO encapsulation and inher-
itance. The promise for the future of E-business is immeasurable, but the challenge of harmonizing these fundamentally
different data management strategies is daunting at best.

With the promise too great to ignore, several XML data binding tools have emerged claiming to realize it. Over the
course of this discussion, two leading tools written in Java, JAXB and Castor, were evaluated with painstaking scrutiny
to compare their performance in this space.

The evaluation criteria were selected because they were deemed to be of greatest interest to both XML analysts and
Java developers. From a client usability standpoint, both tools were, despite certain differences, largely comparable in
their performance of the basic XML data binding operations: validation of the W3C XML Schema, object-model
generation from the schema, validation and unmarshalling of the XML instance, manipulation of the marshalled instance,
and finally unmarshalling into a new XML instance. However, one tool distinguished itself simply by being more
aligned with the intent of XML, and that was Castor.

Castor managed to capture the spirit of many of the key constructs of XML Schema within the object model it generated.
While handling constructs like sequences, attributes and attribute groups, and complex types with extensions, Castor
also incorporated key validation concepts like cardinality, enumeration restrictions, and boundary restrictions in its
object model. It also had rich customization capability. However, Castor was not perfect by any means. It failed to

RenderX
24XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

manage restrictions of simple types on xs:pattern and on <xs:union>. It did not quite handle the <xsd:choice> construct
despite a valiant effort. The generated code, by virtue of its insistence upon relationships among concrete classes rather
than abstractions and upon the proliferation of proprietary checked exceptions, might not necessarily be ideal from the
perspective of a Java developer. Castor’s default reliance on the Vector class for its collections rather than the far more
efficient ArrayList was also a poor choice. Yet whatever its flaws, Castor was clearly superior to JAXB, which failed
to account for any but the most basic XML Schema constructs. Although JAXB is a standard and presents some distinct
advantages, its inability to capture the essence of XML Schema was disappointing. It is clear that Castor has earned
its place at the forefront of XML data binding tools, but it still has far to go.

Whatever the relative quality of XML binding tools may be to date, there is no doubt that the possibilities offered by
XML data binding are immense. Therefore, existing tools will evolve while new tools emerge, and each new generation
of binding tools is likely to narrow the gap that much further between the data management philosophies of XML and
OO technologies. Whether the gap is ever closed remains to be seen, but the technology holds exciting possibilities
for the future of E-business.

6. Suggestions for Further Research
Although every attempt was made to provide a thorough analysis of JAXB and Castor, the power and complexity as-
sociated with XML Schema and OO technologies render virtually any analysis of XML data binding wanting. It is
thus incumbent upon those with interest in this space to remain vigilant.

The following are suggestions for further research in the realm of XML data binding:

• Other tools besides JAXB and Castor like XMLBeans, XSDObjectGen, and xsd.exe from Microsoft .Net [netxml]

• Execution with countless other XML Schema constructs like <xs:substitutionGroup> and <xs:unique> (with its
XPath components), other built-in data types like xs:date (and faceted restrictions thereupon), restrictions of complex
types, etc.

• Execution with schema content that is included and imported—and namespace resolution in the latter case

• Resolution of collisions between declarations with the same name or between declarations named identically to
reserved words in the OO programming language21

• Mapping of URN namespaces to Java package names

• Performance in terms of resource consumption and time

• The lessons XML Schema data binding tools may hold for WSDL data binding tools as web services continue to
proliferate

• Database integration

• Detailed customization capabilities

• Quality of generated code in terms of testability, security, and the extent to which “Design Smells” are absent22

21As an example of the latter case, consider the type declaration PlayerType, which in both schemas contains a child element called Throws. Suppose
instead that PlayerType contained an attribute called throws. This would be problematic because Java has a reserved word called throws as well,
and the collision would have to be addressed through some sort of customization. Moreover, collisions like this can happen with any language. An
attribute called throw (rather than throws) would face collisions with keywords in both Java and C#.
22Martin describes several “Design Smells” that are symptoms of poor code—or more specifically, code that is resistant to change in the face of
changing requirements. These are Rigidity, Needless Complexity, Needless Repetition, Opacity, Fragility, Immobility, and Viscosity [Martin].

RenderX
25XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

These are but a sample of the innumerable areas of study in XML data binding. It behooves both the XML and OO
communities to explore all possible areas of study with as much zeal as possible, for binding tools could go far towards
revolutionizing the development of enterprise applications at the core of E-business.

A. mlb_globals.xsd

<?xml version="1.0" encoding="UTF-8"?>
<!--
Baseline case with no particular idiosyncrasies. General schema design best
practices are followed including 1) upper camel case for elements
and types, 2) lower camel case for attributes, 3) global
declarations of elements and types amd 4) local declarations of
attributes.
-->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.xmlconference.org/xmldatabinding/primary"
 targetNamespace="http://www.xmlconference.org/xmldatabinding/primary"

 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xs:element name="MajorLeagueBaseball" type="MLBType"/>
 <xs:complexType name="MLBType">
 <xs:sequence>
 <!-- Using choice -->
 <xs:choice>
 <xs:element ref="Year" />
 <xs:element ref="Designator" />
 </xs:choice>
 <!-- Enforcing cardinality -->
 <xs:element ref="AmericanLeagueTeam" minOccurs="14" maxOccurs="14"/>

 <!-- Enforcing cardinality -->
 <xs:element ref="NationalLeagueTeam" minOccurs="16" maxOccurs="16"/>

 </xs:sequence>
 <xs:attribute name="commissioner" type="xs:string" use="optional"/>
 </xs:complexType>
 <xs:element name="Year" type="YearType" />
 <xs:element name="Designator" type="xs:string" />
 <xs:simpleType name="YearType">
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="2005"/>
 </xs:restriction>
 </xs:simpleType>
 <!-- Pitcher -->
 <xs:element name="AmericanLeaguePitcher" type="PitcherType"/>
 <xs:element name="NationalLeaguePitcher" type="NationalLeaguePitcherType"/>

 <!-- Extension of abstract complex type -->

RenderX
26XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

 <xs:complexType name="PitcherType">
 <xs:complexContent>
 <xs:extension base="PlayerType">
 <xs:sequence>
 <xs:element ref="ERA"/>
 <xs:element ref="Innings"/>
 <xs:element ref="Role"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <!-- Extension of abstract complex type -->
 <xs:complexType name="NationalLeaguePitcherType">
 <xs:complexContent>
 <xs:extension base="PitcherType">
 <xs:sequence>
 <xs:element ref="BattingStatistics"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="Innings" type="xs:nonNegativeInteger"/>
 <xs:element name="ERA" type="ERAType"/>
 <xs:element name="Role" type="PitcherRoleType"/>
 <!-- Restriction of simple type -->
 <xs:simpleType name="ERAType">
 <xs:restriction base="xs:decimal">
 <xs:fractionDigits value="2"/>
 </xs:restriction>
 </xs:simpleType>
 <!-- Restriction of simple type -->
 <xs:simpleType name="PitcherRoleType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="starter"/>
 <xs:enumeration value="reliever"/>
 </xs:restriction>
 </xs:simpleType>
 <!-- Batter -->
 <!-- Extension of abstract complex type -->
 <xs:complexType name="BatterType">
 <xs:complexContent>
 <xs:extension base="PlayerType">
 <xs:sequence>
 <xs:element ref="BattingStatistics"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="BattingStatisticsType">
 <xs:sequence>
 <xs:element ref="BattingAverage"/>
 <xs:element ref="HomeRuns"/>
 <xs:element ref="RBI"/>

RenderX
27XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

 <xs:element ref="Runs"/>
 <xs:element ref="Bats"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="BattingStatistics" type="BattingStatisticsType"/>
 <xs:element name="BattingAverage" type="PercentageType"/>
 <xs:element name="HomeRuns" type="xs:nonNegativeInteger"/>
 <xs:element name="RBI" type="xs:nonNegativeInteger"/>
 <xs:element name="Runs" type="xs:nonNegativeInteger"/>
 <xs:element name="Bats" type="BatsType"/>
 <!-- Restriction of simple type -->
 <xs:simpleType name="BatsType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="left"/>
 <xs:enumeration value="right"/>
 <xs:enumeration value="switch"/>
 </xs:restriction>
 </xs:simpleType>
 <!-- Roster -->
 <xs:element name="Catcher" type="BatterType"/>
 <xs:element name="FirstBaseman" type="BatterType"/>
 <xs:element name="SecondBaseman" type="BatterType"/>
 <xs:element name="ThirdBaseman" type="BatterType"/>
 <xs:element name="Shortstop" type="BatterType"/>
 <xs:element name="LeftFielder" type="BatterType"/>
 <xs:element name="CenterFielder" type="BatterType"/>
 <xs:element name="RightFielder" type="BatterType"/>
 <xs:element name="DesignatedHitter" type="BatterType"/>
 <xs:element name="BenchPlayer" type="BatterType"/>
 <xs:complexType name="BaseRosterType" abstract="true">
 <xs:sequence>
 <xs:element ref="Catcher"/>
 <xs:element ref="FirstBaseman"/>
 <xs:element ref="SecondBaseman"/>
 <xs:element ref="ThirdBaseman"/>
 <xs:element ref="Shortstop"/>
 <xs:element ref="LeftFielder"/>
 <xs:element ref="CenterFielder"/>
 <xs:element ref="RightFielder"/>
 </xs:sequence>
 </xs:complexType>
 <!-- Extension of abstract complex type -->
 <xs:complexType name="AmericanLeagueRosterType">
 <xs:complexContent>
 <xs:extension base="BaseRosterType">
 <xs:sequence>
 <!-- Using choice -->
 <xs:choice>
 <xs:sequence>
 <xs:element ref="DesignatedHitter"/>
 <!-- Enforcing cardinality -->
 <xs:element ref="BenchPlayer" minOccurs="7"
 maxOccurs="7"/>

RenderX
28XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

 </xs:sequence>
 <!-- Enforcing cardinality -->
 <xs:element ref="BenchPlayer" minOccurs="8" maxOccurs="8"/>

 </xs:choice>
 <xs:element ref="AmericanLeaguePitcher" minOccurs="10"
 maxOccurs="10"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <!-- Extension of abstract complex type -->
 <xs:complexType name="NationalLeagueRosterType">
 <xs:complexContent>
 <xs:extension base="BaseRosterType">
 <xs:sequence>
 <!-- Enforcing cardinality -->
 <xs:element ref="BenchPlayer" minOccurs="8" maxOccurs="8"/>
 <!-- Enforcing cardinality -->
 <xs:element ref="NationalLeaguePitcher" minOccurs="10"
 maxOccurs="10"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="AmericanLeagueRoster" type="AmericanLeagueRosterType"/>
 <xs:element name="NationalLeagueRoster" type="NationalLeagueRosterType"/>
 <!-- Teams -->
 <xs:attribute name="manager" type="xs:string"/>
 <xs:complexType name="AmericanLeagueTeamType">
 <xs:sequence>
 <xs:element ref="AmericanLeagueRoster"/>
 </xs:sequence>
 <xs:attributeGroup ref="TeamAttributes" />
 </xs:complexType>
 <xs:complexType name="NationalLeagueTeamType">
 <xs:sequence>
 <xs:element ref="NationalLeagueRoster"/>
 </xs:sequence>
 <xs:attributeGroup ref="TeamAttributes" />
 </xs:complexType>
 <xs:element name="AmericanLeagueTeam" type="AmericanLeagueTeamType"/>
 <xs:element name="NationalLeagueTeam" type="NationalLeagueTeamType"/>
 <!-- Attribute group -->
 <xs:attributeGroup name="TeamAttributes">
 <xs:attribute name="name" use="required"/>
 <xs:attribute name="manager" use="required"/>
 </xs:attributeGroup>
 <!-- Misc -->
 <!-- Restriction of simple type -->
 <xs:simpleType name="ThrowsType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="left"/>

RenderX
29XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

 <xs:enumeration value="right"/>
 </xs:restriction>
 </xs:simpleType>
 <!-- Restriction of simple type -->
 <xs:simpleType name="PercentageType">
 <xs:restriction base="xs:decimal">
 <xs:pattern value=".[0-9]{3}|1.000"/>
 </xs:restriction>
 </xs:simpleType>
 <!-- Abstract type -->
 <xs:complexType name="PlayerType" abstract="true">
 <xs:sequence>
 <xs:element ref="Name"/>
 <xs:element ref="FieldingPercentage"/>
 <xs:element ref="Throws"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="FieldingPercentage" type="PercentageType"/>
 <xs:element name="Throws" type="ThrowsType"/>
</xs:schema>

B. mlb_locals.xsd

<?xml version="1.0" encoding="UTF-8"?>
<!-- Some, but not all, declarations from mlb_primary.xsd are localized -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.xmlconference.org/xmldatabinding/locals"
 targetNamespace="http://www.xmlconference.org/xmldatabinding/locals"

 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xs:element name="MajorLeagueBaseball">
 <!-- Local type declaration -->
 <xs:complexType>
 <xs:sequence>
 <!-- Using choice -->
 <xs:choice>
 <!-- Local element declaration -->
 <xs:element name="Year">
 <!-- Local type declaration -->
 <xs:simpleType>
 <xs:restriction base="xs:integer">
 <xs:minInclusive value="2005"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>

RenderX
30XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

 <!-- Local element declaration -->
 <xs:element name="Designator" type="xs:string"/>
 </xs:choice>
 <!-- Enforcing cardinality -->
 <xs:element ref="AmericanLeagueTeam" minOccurs="14"
 maxOccurs="14"/>
 <!-- Enforcing cardinality -->
 <xs:element ref="NationalLeagueTeam" minOccurs="16"
 maxOccurs="16"/>
 </xs:sequence>
 <xs:attribute name="commissioner" type="xs:string" use="optional"/>
 </xs:complexType>
 </xs:element>
 <!-- Pitcher -->
 <xs:element name="AmericanLeaguePitcher" type="PitcherType"/>
 <xs:element name="NationalLeaguePitcher" type="NationalLeaguePitcherType"/>

 <xs:complexType name="PitcherType">
 <xs:complexContent>
 <xs:extension base="PlayerType">
 <xs:sequence>
 <!-- Local element declaration -->
 <xs:element name="ERA">
 <!-- Local type declaration -->
 <xs:simpleType>
 <xs:restriction base="xs:decimal">
 <xs:fractionDigits value="2"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element ref="Innings"/>
 <xs:element ref="Role"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="NationalLeaguePitcherType">
 <xs:complexContent>
 <xs:extension base="PitcherType">
 <xs:sequence>
 <xs:element ref="BattingStatistics"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:element name="Innings" type="xs:nonNegativeInteger"/>
 <xs:element name="Role">
 <!-- Local type declaration -->
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="starter"/>
 <xs:enumeration value="reliever"/>
 </xs:restriction>

RenderX
31XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

 </xs:simpleType>
 </xs:element>
 <!-- Batter -->
 <xs:complexType name="BatterType">
 <xs:complexContent>
 <xs:extension base="PlayerType">
 <xs:sequence>
 <xs:element ref="BattingStatistics"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 <xs:complexType name="BattingStatisticsType">
 <xs:sequence>
 <xs:element ref="BattingAverage"/>
 <xs:element ref="HomeRuns"/>
 <xs:element ref="RBI"/>
 <xs:element ref="Runs"/>
 <xs:element ref="Bats"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="BattingStatistics" type="BattingStatisticsType"/>
 <xs:element name="BattingAverage" type="PercentageType"/>
 <xs:element name="HomeRuns" type="xs:nonNegativeInteger"/>
 <xs:element name="RBI" type="xs:nonNegativeInteger"/>
 <xs:element name="Runs" type="xs:nonNegativeInteger"/>
 <xs:element name="Bats">
 <!-- Local type declaration -->
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="left"/>
 <xs:enumeration value="right"/>
 <xs:enumeration value="switch"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <!-- Roster -->
 <xs:element name="Catcher" type="BatterType"/>
 <xs:element name="FirstBaseman" type="BatterType"/>
 <xs:element name="SecondBaseman" type="BatterType"/>
 <xs:element name="ThirdBaseman" type="BatterType"/>
 <xs:element name="Shortstop" type="BatterType"/>
 <xs:element name="LeftFielder" type="BatterType"/>
 <xs:element name="CenterFielder" type="BatterType"/>
 <xs:element name="RightFielder" type="BatterType"/>
 <xs:element name="DesignatedHitter" type="BatterType"/>
 <xs:element name="BenchPlayer" type="BatterType"/>
 <xs:complexType name="BaseRosterType" abstract="true">
 <xs:sequence>
 <xs:element ref="Catcher"/>
 <xs:element ref="FirstBaseman"/>
 <xs:element ref="SecondBaseman"/>
 <xs:element ref="ThirdBaseman"/>

RenderX
32XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

 <xs:element ref="Shortstop"/>
 <xs:element ref="LeftFielder"/>
 <xs:element ref="CenterFielder"/>
 <xs:element ref="RightFielder"/>
 </xs:sequence>
 </xs:complexType>
 <!-- Teams -->
 <xs:complexType name="NationalLeagueTeamType">
 <xs:sequence>
 <!-- Local element declaration -->
 <xs:element name="NationalLeagueRoster">
 <!-- Local type declaration -->
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="BaseRosterType">
 <xs:sequence>
 <xs:element ref="BenchPlayer" minOccurs="8"
 maxOccurs="8"/>
 <xs:element ref="NationalLeaguePitcher" minOccurs="10"

 maxOccurs="10"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <!-- Local attribute declarations -->
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="manager" type="xs:string" use="required"/>
 </xs:complexType>
 <xs:element name="AmericanLeagueTeam">
 <!-- Local type declaration -->
 <xs:complexType>
 <xs:sequence>
 <!-- Local element declaration -->
 <xs:element name="AmericanLeagueRoster">
 <!-- Local type declaration -->
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="BaseRosterType">
 <xs:sequence>
 <xs:choice>
 <xs:sequence>
 <xs:element ref="DesignatedHitter"/>
 <xs:element ref="BenchPlayer" minOccurs="7"
 maxOccurs="7"/>
 </xs:sequence>
 <xs:element ref="BenchPlayer" minOccurs="8"
 maxOccurs="8"/>
 </xs:choice>
 <xs:element ref="AmericanLeaguePitcher"
 minOccurs="10"

RenderX
33XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

 maxOccurs="10"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <!-- Local attribute declarations -->
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="manager" type="xs:string" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="NationalLeagueTeam" type="NationalLeagueTeamType"/>
 <!-- Misc -->
 <xs:simpleType name="ThrowsType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="left"/>
 <xs:enumeration value="right"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="PercentageType">
 <!-- Using union -->
 <xs:union>
 <!-- Local type declaration -->
 <xs:simpleType>
 <xs:restriction base="xs:decimal">
 <xs:pattern value=".[0-9]{3}"/>
 </xs:restriction>
 </xs:simpleType>
 <!-- Local type declaration -->
 <xs:simpleType>
 <xs:restriction base="xs:decimal">
 <xs:pattern value="1.000"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>
 <xs:complexType name="PlayerType" abstract="true">
 <xs:sequence>
 <xs:element ref="Name"/>
 <xs:element ref="FieldingPercentage"/>
 <xs:element ref="Throws"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="FieldingPercentage" type="PercentageType"/>
 <xs:element name="Throws" type="ThrowsType"/>
</xs:schema>

RenderX
34XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

C. JAXB Code Sample

import com.sun.tools.xjc.Driver;
import org.xmlconference.xmldatabinding.jaxb.primary.AmericanLeagueRosterType;
import org.xmlconference.xmldatabinding.jaxb.primary.AmericanLeagueTeam;
import org.xmlconference.xmldatabinding.jaxb.primary.BatterType;
import org.xmlconference.xmldatabinding.jaxb.primary.BattingStatistics;
import org.xmlconference.xmldatabinding.jaxb.primary.BattingStatisticsType;
import org.xmlconference.xmldatabinding.jaxb.primary.LeftFielder;
import org.xmlconference.xmldatabinding.jaxb.primary.MajorLeagueBaseball;
import org.xmlconference.xmldatabinding.jaxb.primary.ObjectFactory;

import javax.xml.bind.JAXBContext;
import javax.xml.bind.JAXBException;
import javax.xml.bind.Marshaller;
import javax.xml.bind.Unmarshaller;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.math.BigDecimal;
import java.math.BigInteger;
import java.util.List;

public final class JAXBSample extends Object {
 private static final String[] args_primary = {
 "C:\\xml2005\\mlb_primary.xsd",
 "-d",
 "C:\\xml2005\\code\\src"
 };

 public JAXBSample() {
 JAXBContext context = null;
 Unmarshaller unmarshaller = null;
 Marshaller marshaller = null;
 MajorLeagueBaseball mlb = null;
 List teams = null;
 AmericanLeagueTeam alt = null;
 FileInputStream fis = null;
 FileOutputStream fos = null;
 AmericanLeagueRosterType roster = null;
 BatterType firstBaseman = null;
 BattingStatisticsType stats = null;
 ObjectFactory factory = new ObjectFactory();

 try {
 Driver.main(args_primary);
 context =

JAXBContext.newInstance("org.xmlconference.xmldatabinding.jaxb.primary");
 unmarshaller = context.createUnmarshaller();

RenderX
35XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

 fis = new FileInputStream("C:\\xml2005\\mlb_primary.xml");
 mlb = (MajorLeagueBaseball) unmarshaller.unmarshal(fis);
 }
 catch (JAXBException e) {
 e.printStackTrace();
 }
 catch (FileNotFoundException e) {
 e.printStackTrace();
 }
 catch (Exception e) {
 e.printStackTrace();
 }

 System.out.println("The commissioner of Major League Baseball is " +
 mlb.getCommissioner());

 teams = mlb.getAmericanLeagueTeam();

 for (Object obj : teams) {
 alt = (AmericanLeagueTeam) obj;

 if (alt.getName().equals("Baltimore Orioles")) {
 roster = alt.getAmericanLeagueRoster();
 firstBaseman = roster.getFirstBaseman();
 stats = firstBaseman.getBattingStatistics();

 System.out.println("The Orioles manager is " + alt.getManager());

 System.out.println("The Orioles designated hitter is " +
 roster.getDesignatedHitter().getName());
 System.out.println("The Orioles first baseman throws " +
 firstBaseman.getThrows());
 System.out.println("He is batting (float) " +
 stats.getBattingAverage().floatValue());
 System.out.println("He is batting (plain String) " +
 stats.getBattingAverage().toPlainString());
 System.out.println("He has hit this many home runs: " +
 stats.getHomeRuns().intValue());

 stats.setBattingAverage(new BigDecimal(.299));
 firstBaseman.setThrows("right");
 roster.setLeftFielder(getNewLeftFielder(factory));
 }
 }

 try {
 fos = new FileOutputStream("C:\\xml2005\\mlb_primary_modified.xml");

 marshaller.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT,
 Boolean.TRUE);
 marshaller.setProperty(Marshaller.JAXB_SCHEMA_LOCATION,
 "http://www.xmlconference.org/" +
 "xmldatabinding/primary mlb_primary.xsd");

RenderX
36XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

 marshaller.marshal(mlb, fos);
 }
 catch (FileNotFoundException e) {
 e.printStackTrace();
 }
 catch (JAXBException e) {
 e.printStackTrace();
 }

 }

 private LeftFielder getNewLeftFielder(ObjectFactory factory) {
 LeftFielder lf = null;

 try {
 lf = factory.createLeftFielder();
 lf.setName("David Newhan");
 lf.setThrows("right");
 lf.setFieldingPercentage(new BigDecimal(.991));
 lf.setBattingStatistics(getNewStats(factory));
 }
 catch (JAXBException e) {
 e.printStackTrace();
 }

 return lf;
 }

 private BattingStatistics getNewStats(ObjectFactory factory) {
 BattingStatistics stats = null;

 try {
 stats = factory.createBattingStatistics();
 stats.setBats("lefty");
 stats.setBattingAverage(new BigDecimal(".300"));
 stats.setHomeRuns(new BigInteger("24"));
 stats.setRBI(new BigInteger("80"));

 }
 catch (JAXBException e) {
 e.printStackTrace();
 }

 return stats;
 }
}

RenderX
37XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

D. Castor Code Sample

import org.exolab.castor.builder.SourceGenerator;
import org.exolab.castor.xml.MarshalException;
import org.exolab.castor.xml.ValidationException;
import org.xmlconference.xmldatabinding.castor.primary.AmericanLeagueTeam;
import org.xmlconference.xmldatabinding.castor.primary.BattingStatistics;
import org.xmlconference.xmldatabinding.castor.primary.LeftFielder;
import org.xmlconference.xmldatabinding.castor.primary.MajorLeagueBaseball;
import org.xmlconference.xmldatabinding.castor.primary.FirstBaseman;
import org.xmlconference.xmldatabinding.castor.primary.AmericanLeagueRoster;
import
org.xmlconference.xmldatabinding.castor.primary.AmericanLeagueRosterTypeChoice;
import
org.xmlconference.xmldatabinding.castor.primary.AmericanLeagueRosterTypeChoiceSequence;
import org.xmlconference.xmldatabinding.castor.primary.types.BatsType;
import org.xmlconference.xmldatabinding.castor.primary.types.ThrowsType;

import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.math.BigDecimal;

public final class CastorSample extends Object {
 public CastorSample() {
 SourceGenerator sg = new SourceGenerator();
 MajorLeagueBaseball mlb = null;
 AmericanLeagueTeam[] teams = null;
 FileWriter fw = null;
 FileReader reader = null;
 AmericanLeagueRoster roster = null;
 FirstBaseman firstBaseman = null;
 BattingStatistics stats = null;
 AmericanLeagueRosterTypeChoice choice = null;
 AmericanLeagueRosterTypeChoiceSequence choiceSequence = null;

 sg.setEqualsMethod(true);

 try {
 sg.generateSource("C:\\xml2005\\mlb_primary.xsd",
 "org.xmlconference.xmldatabinding.castor.primary");

 }
 catch (IOException e) {
 e.printStackTrace();
 }

 try {
 reader = new FileReader("C:\\xml2005\\mlb_primary.xml");

RenderX
38XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

 mlb = (MajorLeagueBaseball) MajorLeagueBaseball.unmarshal(reader);
 }
 catch (MarshalException e) {
 e.printStackTrace();
 }
 catch (ValidationException e) {
 e.printStackTrace();
 }
 catch (FileNotFoundException e) {
 e.printStackTrace();
 }

 System.out.println("The commissioner of Major League Baseball is " +
 mlb.getCommissioner());

 teams = mlb.getAmericanLeagueTeam();

 for (AmericanLeagueTeam alt : teams) {
 if (alt.getName().equals("Baltimore Orioles")) {
 roster = alt.getAmericanLeagueRoster();
 firstBaseman = roster.getFirstBaseman();
 stats = firstBaseman.getBattingStatistics();
 choice = roster.getAmericanLeagueRosterTypeChoice();
 choiceSequence = choice.getAmericanLeagueRosterTypeChoiceSequence();

 System.out.println("The Orioles manager is " + alt.getManager());

 System.out.println("The Orioles designated hitter is " +
 choiceSequence.getDesignatedHitter().getName());

 System.out.println("The Orioles first baseman throws " +
 firstBaseman.getThrows());
 System.out.println("He is batting (as a float) " +
 stats.getBattingAverage().floatValue());
 System.out.println("He is batting (as a plain String) " +
 stats.getBattingAverage().toPlainString());
 System.out.println("He has hit this many home runs: " +
 stats.getHomeRuns());

 stats.setBattingAverage(new BigDecimal(.299));
 firstBaseman.setThrows(ThrowsType.RIGHT);
 alt.getAmericanLeagueRoster().setLeftFielder(getNewLeftFielder());

 }
 }

 try {
 fw = new FileWriter("C:\\xml2005\\mlb_primary_modified.xml");
 mlb.marshal(fw);
 fw.close();
 }
 catch (IOException e) {

RenderX
39XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

 e.printStackTrace();
 }
 catch (MarshalException e) {
 e.printStackTrace();
 }
 catch (ValidationException e) {
 e.printStackTrace();
 }
 }

 private LeftFielder getNewLeftFielder() {
 LeftFielder lf = new LeftFielder();

 lf.setName("David Newhan");
 lf.setThrows(ThrowsType.RIGHT);
 lf.setFieldingPercentage(new BigDecimal(.991));
 lf.setBattingStatistics(getNewStats());

 return lf;
 }

 private BattingStatistics getNewStats() {
 BattingStatistics stats = new BattingStatistics();

 stats.setBats(BatsType.LEFT);
 stats.setBattingAverage(new BigDecimal(".300"));
 stats.setHomeRuns(24);
 stats.setRBI(80);

 return stats;
 }

}

Bibliography
[The Java Web Services Tutorial] The Java Web Services Tutorial, June 14, 2005. Available at http://java.sun.com/web-
services/docs/1.6/tutorial/doc/index.html

[The Castor Project] The Castor Project. Available at http://www.castor.org/index.html

[Using the Source Code Generator] Using the Source Code Generator, Keith Visco and Arnaud Blandin. Available at
http://www.castor.org/sourcegen.html

[Castor API] Castor API. Available at http://www.castor.org/api/overview-summary.html

[javaworld] Use XML Data Binding to Do Your Laundry: Explore JAXB and Castor from the Ground Up, Sam Brodkin,
December 28, 2001. Available at http://www.javaworld.com/javaworld/jw-12-2001/jw-1228-jaxb.html

RenderX
40XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://java.sun.com/webservices/docs/1.6/tutorial/doc/index.html
http://java.sun.com/webservices/docs/1.6/tutorial/doc/index.html
http://www.castor.org/index.html
http://www.castor.org/sourcegen.html
http://www.castor.org/api/overview-summary.html
http://www.javaworld.com/javaworld/jw-12-2001/jw-1228-jaxb.html
http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

[onjava] XML Data Binding with Castor, Dion Almaer, October 24, 2001. Available at http://www.onjava.com/pub/a/on-
java/2001/10/24/xmldatabind.html

[xmlcom] Comparing Java Data Binding Tools, Mette Hedin, September 03, 2003. Available at ht-
tp://www.xml.com/pub/a/2003/09/03/binding.html

[Martin] Agile Software Development: Principles, Patterns, and Practices, Robert C. Martin et al., Prentice Hall, Oc-
tober 15, 2002.

[Martin UML] UML for Java Programmers, Robert C. Martin, Prentice Hall, May 27, 2003.

[javaboutique] Converting XML documents to Java objects with Castor XML, Keld H. Hansen. Available at ht-
tp://javaboutique.internet.com/tutorials/CastorXML/index.html

[Kolawa] Java Code Security Rules, Adam Kolawa et al. Available at http://www.ftponline.com/resources/spcollec-
tions/jcsr/

[JSR 31] JSR 31: XML Data Binding Specification. Available at http://www.jcp.org/en/jsr/detail?id=31

[JSR 222] JSR 222: Java Architecture for XML Binding (JAXB) 2.0. Available at http://www.jcp.org/en/jsr/detail?id=222

[serverside] Opinion: What Tool for Xml Binding?, Joseph Fouad, December 17, 2004. Available at http://www.theserver-
side.com/news/thread.tss?thread_id=30658

[usingschema] Using W3C XML Schema, Eric van der Vlist, October 17, 2001. Available at ht-
tp://www.xml.com/pub/a/2000/11/29/schemas/part1.html?page=1

[roseindia] Beginning JAXB (Jav Architecture for XML Binding), R.S. Ramaswamy, May 2005. Available at ht-
tp://www.roseindia.net/jaxb/r/jaxb.shtml

[zdnetasia] Java-XML Data Binding Offers the Best of Both Worlds, Harshad Oak, September 18, 2002. Available at
http://www.zdnetasia.com/builder/architect/system/0,39045489,39081953,00.htm

[netxml] .NET and XML, Niel M. Bornstein, O'Reilly, July 2003.

[J2SE API] Java 2 Platform Standard Edition 5.0 API Specification. Available at http://java.sun.com/j2se/1.5.0/docs/api/

[Java Technology Documentation] Java Technology and Web Services - Documentation. Available at ht-
tp://java.sun.com/webservices/docs.html

[Gamma et al.] Design Patterns, Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Addison-Wesley
Professional, January 15, 1995.

[C# Reserved Words] Getting Started with C#, September 2, 2001.. Available at http://www.informit.com/articles/art-
icle.asp?p=23211&seqNum=4&rl=1

[Using XJC with Ant] Java Architecture for XML Binding: Using XJC with Ant. Available at http://java.sun.com/web-
services/docs/1.6/jaxb/ant.html

Acknowledgements
The author would like to recognize the following individuals who helped to improve the quality of this discussion:
Research Fellows Jessica Glace and Jonathan Leete of LMI Government Consulting, James Villani of ASSETT, Inc.,
Chadwick Adebiyi of EMC Legato, and Geoffrey H. Simpson, J.D. The author would also like to express his heartfelt

RenderX
41XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.onjava.com/pub/a/onjava/2001/10/24/xmldatabind.html
http://www.onjava.com/pub/a/onjava/2001/10/24/xmldatabind.html
http://www.xml.com/pub/a/2003/09/03/binding.html
http://www.xml.com/pub/a/2003/09/03/binding.html
http://javaboutique.internet.com/tutorials/CastorXML/index.html
http://javaboutique.internet.com/tutorials/CastorXML/index.html
http://www.ftponline.com/resources/spcollections/jcsr/
http://www.ftponline.com/resources/spcollections/jcsr/
http://www.jcp.org/en/jsr/detail?id=31
http://www.jcp.org/en/jsr/detail?id=222
http://www.theserverside.com/news/thread.tss?thread_id=30658
http://www.theserverside.com/news/thread.tss?thread_id=30658
http://www.xml.com/pub/a/2000/11/29/schemas/part1.html?page=1
http://www.xml.com/pub/a/2000/11/29/schemas/part1.html?page=1
http://www.roseindia.net/jaxb/r/jaxb.shtml
http://www.roseindia.net/jaxb/r/jaxb.shtml
http://www.zdnetasia.com/builder/architect/system/0,39045489,39081953,00.htm
http://java.sun.com/j2se/1.5.0/docs/api/
http://java.sun.com/webservices/docs.html
http://java.sun.com/webservices/docs.html
http://www.informit.com/articles/article.asp?p=23211&seqNum=4&rl=1
http://www.informit.com/articles/article.asp?p=23211&seqNum=4&rl=1
http://java.sun.com/webservices/docs/1.6/jaxb/ant.html
http://java.sun.com/webservices/docs/1.6/jaxb/ant.html
http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

gratitude to LMI officers Vice-President Dr. Susan Marquis, Executive Director Robert Hutchinson, Program Director
Joseph Zurlo, and Program Manager Debra Dennie, whose continuous encouragement and support were invaluable.
Finally, the author wishes to express a special note of thanks to Gregory Wilson of LMI Government Consulting,
whose knowledge of XML is matched only by his kindness and generosity and without whom this paper would not
have been possible.

RenderX
42XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

Biography
Neil Chaudhuri

Software Engineer
LMI Government Consulting [http://www.lmi.org]
McLean
Virginia
United States of America

A Sun Certified Java Programmer, Mr. Chaudhuri is currently a Software Engineer with LMI Government Con-
sulting in McLean, VA. His work focuses on object-oriented design principles and best practices, and he leads
development teams building applications utilizing such technologies as Java/J2EE, Microsoft .Net, leading database
technologies like Oracle, and XML and related technologies like W3C XML Schema, XSLT, ebXML Core
Components, and web services. Mr. Chaudhuri’s experience has led him to become a champion of agile methodo-
logies for software development. He also teaches introductory XML and JavaScript courses in Virginia for Fairfax
County Public Schools Adult and Community Education Program.

Mr. Chaudhuri is the author of J2EE or .Net: A Managerial Perspective, published in 2003 by the International
Workshop on Evolution of Large-scale Industrial Software Applications, and Very Large Software Systems: A
Service-Oriented Approach, published by the 2005 World Multi-Conference on Systemics, Cybernetics and In-
formatics.

Mr. Chaudhuri recently received a Master of Science degree in Information Systems Technology with a concen-
tration in Management from The George Washington University. He also has a Bachelor of Science degree in
Computer Science from the University of Maryland as well as a Bachelor of Science degree in Biological Sciences
and a Bachelor of Arts degree in Political Science from the University of Pittsburgh. Mr. Chaudhuri is a member
of Phi Beta Kappa and the the Zeta Chapter of Alpha Iota Mu, the National Honor Society for Information Systems.

RenderX
43XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

XML Data Binding: Integrating XML and Object-Oriented
Technologies

Re-format page sizes

http://www.lmi.org
http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=77

	1. Introduction
	1.1. The Challenges of Integrated Data Management
	1.2. The Case for XML Data Binding
	1.3. XML Data Binding Tools: JAXB and Castor
	1.3.1. JAXB
	1.3.2. Castor

	1.4. Course of Discussion

	2. Evaluation Methodology
	2.1. XML Schema Documents and Corresponding Instance
	2.2. Evaluation Criteria
	2.2.1. Bidirectional Integrity
	2.2.2. Usability

	3. Evaluation Results: JAXB
	3.1. Bidirectional Integrity
	3.1.1. Generation of the Object Model
	3.1.2. Unmarshalling and Object Manipulation
	3.1.2.1. XML Schema Data Types
	3.1.2.2. <xs:sequence>
	3.1.2.3. <xs:choice>
	3.1.2.4. <xs:simpleType> with Restrictions
	3.1.2.5. <xs:complexType> with Extensions and with abstract="true"
	3.1.2.6. Cardinality for Elements Beyond the Default Value of 1
	3.1.2.7. Atypical Data Types
	3.1.2.8. Attributes and <xs:attributeGroup>

	3.1.3. Marshalling

	3.2. Usability
	3.2.1. Generation of the Object Model
	3.2.2. Unmarshalling
	3.2.3. Object Manipulation
	3.2.4. Marshalling

	3.3. Next Steps

	4. Evaluation Results: Castor
	4.1. Bidirectional Integrity
	4.1.1. Generation of the Object Model
	4.1.2. Unmarshalling and Object Manipulation
	4.1.2.1. XML Schema Data Types
	4.1.2.2. <xs:sequence>
	4.1.2.3. <xs:choice>
	4.1.2.4. <xs:simpleType> with Restrictions
	4.1.2.5. <xs:complexType> with Extensions and with abstract="true"
	4.1.2.6. Cardinality for Elements Beyond the Default Value of 1
	4.1.2.7. Atypical Data Types
	4.1.2.8. Attributes and <xs:attributeGroup>

	4.1.3. Marshalling

	4.2. Usability
	4.2.1. Generation of the Object Model
	4.2.2. Unmarshalling
	4.2.3. Object Manipulation
	4.2.4. Marshalling

	4.3. Next Steps

	5. Summary and Concluding Remarks
	6. Suggestions for Further Research
	A. mlb_globals.xsd
	B. mlb_locals.xsd
	C. JAXB Code Sample
	D. Castor Code Sample
	Bibliography
	Acknowledgements

