
Phantom XML
If you look too hard it isn't there!

Kristoffer Rose

Lionel Villard
Copyright © 2005 IBM, Corp.

Abstract

The original purpose of the W3C Extensible Markup Language (XML) was as a generic representation
and interchange format for structured and semi-structured data. In practice this means that mappings
exist for many data formats between the native form and an XML version. There are even standards
for setting up such mappings, such as SQLX for mapping relational databases and the Global Grid
Forum "Data Format Description Language" (DFDL) for mapping binary formats. More mappings
will certainly arise and there might be a time when XML will be the long awaited data unification
language...but there are still some rocks on the path. Indeed, XML suffers from a specific problem:
the default data representation as character sequences is not well suited for processing, not even for
processing by the XML standard languages. XPath 2.0, XSLT 2.0, and XQuery 1.0, part of the next
generation of such languages, acknowledge this fact by having their behaviour specified in terms of
an abstract version of XML, the data model, with a separate document describing the relationship
between instances of this data model and actual "serialized" XML documents. An especially interesting
case is when data is only accessed through queries in XPath. In this case the naive model does not
work: it is overly expensive in space (and thus time) to parse or convert entire data structures to an
in-memory XML data model instance and then run a generic XPath engine on the converted results.

We propose to make XPath access space efficient in general by the following strategy: First, virtualize
the XML Data Model to allow creation of lightweight cursor-based adapters making various data
structures appear as if they were XML without introducing unnecessary overhead. An example of
this is to wrap access to the entire file system as a single virtual XML node corresponding to the
"current file or directory" from which XPath navigation gives access to the whole filesystem. Second,
catalog useful profiles of restricted Data Model instances for which such access is as efficient as
directly accessing the underlying data structure. Examples, explained in the paper, are streaming,
streaming with back-pointers, linear, and random access. Third, describe an analysis of XPath queries
that determines the profile requirements for that query (for a specific XPath evaluator). This analysis
can determine, for example, that simple "downwards" XPath queries can be executed within the
constraints of the streaming profile. Finally, provide a cache wrapper that allows use of a data source
with a restricted profile in a context requiring a more complete profile, for example, materializing
all actually visited nodes in an internal tree permits use of the random access profile over streaming
data sources.

In this paper, we describe each of these components in detail and show through examples how they
interact in a running XML processing system. We call the approach for phantom XML to highlight
the fact that the combination of direct adapters and an optional cache implies that no traditional XML
is stored in the system. We measure actual efficiency (in space and time) of running some realistic
example XPath queries against, both real XML documents and virtual XML data, using our imple-
mentation. This demonstrates, for example, that streaming XPaths runs in constant space at compet-
itive speeds, and that XPaths with locally bounded predicates run in space unrelated to the overall
data size.

RenderX
1XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=80

Table of Contents
1. Introduction .. 3

1.1. Background .. 3
1.2. Idea ... 3
1.3. Our approach in an example ... 4
1.4. Organization of the paper .. 7

2. Lightweight Virtualization of the XML Data Model .. 7
2.1. Focus operations .. 7
2.2. Streaming input ... 9
2.3. Streaming output .. 10
2.4. Forward only with skipping profile .. 13
2.5. Downward only profile ... 13
2.6. Full data model profile .. 13
2.7. Fixing missing profile features .. 13
2.8. Profile and fixer summary .. 14

3. Optimizing XPath for Data Model Profiles .. 15
3.1. XPath processor overview .. 15

3.1.1. Static phase .. 15
3.1.2. Runtime phase .. 17

3.2. Rewrite XPath to constrain used features .. 17
3.2.1. Forward-only transformation ... 18
3.2.2. distinct-doc-order() function removal .. 19
3.2.3. Schema-based rewriting .. 19
3.2.4. Synthesis ... 19

4. Experimentation and measurements ... 20
5. Conclusions and perspectives .. 21

5.1. Next steps ... 21
5.2. Related Work .. 21

Bibliography ... 22

RenderX
2XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Phantom XML

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=80

1. Introduction

1.1. Background
The Extensible Markup Language, [XML], was designed as a generic representation and interchange format. But XML
suffers from a problem: the default data representation as character sequences is not really well suited for processing,
not even for processing by the XML standard languages such as [XPath] and [XSLT]. This is adressed in the next
generation of XML processing languages, [XPath2], [XSLT2], and [XQuery], by defining the languages in terms of
a well-defined data model [DM], and extracting the relationship to traditional textual XML documents.

At the same time, the value of XML is greatly enhanced by the XML Schema structure description language [XS].
Indeed the ubiquity of XML has lead to the use of XML Schema as one of the primary structure description formats
for specification of services of all kinds, notably through the prime data declaration component of the Web Services
standards [WSDL] that are now being used widely in service oriented architectures (SOA). To properly deal with ex-
isting data this has lead the creation of mappings for many structured formats between the native form and an XML
version described with XML Schema. There are even standards for setting up such mappings such as SQL/XML
[SQLX] for relational data and the emerging Data Format Description Language [DFDL] for binary and textual formats.

1.2. Idea
As a consequence of the above it is becoming commonplace to convert from all sorts of formats into XML and then
do XML processing. An especially common case is when data is converted to XML only to be accessed with a single
XPath expression (or a few). This happens, for example, when processing converted structures with XML languages
that exploit XPath such as [BPEL] as well as for writing simple "filter" applications using XPath-based APIs such as
[SDO].

However, the naive model does not work very well in this case: it is overly expensive in both time and space to first
convert structures into textual XML documents, then parse the textual XML into an in-memory internal data model
instance, and finally extract the selected nodes as specified by the XPath (most XPath implementations work off an
in-memory representation of the XML data model instance). What is needed is a good way to avoid any unnecessary
materialization. We suggest doing this by

• analysing the XPath(s) and determine a strategy for accessing just the nodes of the data model instance that are
needed, and

• write a pull wrapper that extracts just those parts of the data that are needed to pose as the needed data model nodes.

The good thing about this separation is that the first step is completely generic, depending only on the semantics of
the XPath language [FS] and the data model [DM], whereas the second step is specific to the data format.

In practice we will achieve this in four steps:

1. Exploit the notion of cursor [SEQUEL2] as the central notion in a new lightweight interface to the XML data
model that allows the creation of lightweight phantom XML adapters that make arbitrary data structures appear
as if they were XML without introducing unnecessary overhead. An example of this is to wrap access to a file
system as a cursor into a single virtual XML document corresponding to the "current file or directory" from which
XPath navigation gives access to the whole filesystem.

2. Catalog useful profiles of features allowed by restricted Data Model instances for which such access is as efficient
as directly accessing the underlying data structure. Examples, explained below, are streaming, streaming with
back-pointers, linear, and random access.

RenderX
3XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Phantom XML

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=80

3. Describe an analysis of XPath queries that determines the profile requirements for that query (for a specific XPath
evaluator). This analysis can determine, for example, that simple "downwards" XPath queries can be executed
within the constraints of the streaming profile.

4. Provide wrappers that allows use of a data source with a restricted profile in a context requiring a more complete
profile, for example, a cache that materializes all actually visited nodes in an internal tree permits use of the random
access profile over streaming data sources.

1.3. Our approach in an example
We will illustrate this approach through an example. Our task will be to extract the top-level numbered headings from
an OpenOffice [OOo] document.

An OpenOffice document (with extension .sxw) is really a [Zip] archive. Example 1, “OpenOffice Document Archive
Structure” shows the archive members of a simple document, "example.sxw".

Example 1. OpenOffice Document Archive Structure

Archive: example.sxw
 Length Date Time Name
 -------- ---- ---- ----
 30 09-15-05 20:50 mimetype
 7966 09-15-05 20:50 content.xml
 14181 09-15-05 20:50 styles.xml
 1066 09-15-05 20:50 meta.xml
 8363 09-15-05 20:50 settings.xml
 752 09-15-05 20:50 META-INF/manifest.xml
 -------- -------
 32358 6 files

The text in the document is in the "content.xml" member, in XML following an OpenOffice-specific DTD. Example 2,
“OpenOffice Document Content XML Structure” shows the "content.xml" component of our sample document (except
it has been formatted and lots of style information has been replaced by "..." so the example fits).

RenderX
4XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Phantom XML

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=80

Example 2. OpenOffice Document Content XML Structure

<?xml version="1.0"?>
<!DOCTYPE office:document-content
 PUBLIC "-//OpenOffice.org//DTD OfficeDocument 1.0//EN" "office.dtd">
<office:document-content xmlns:office="http://openoffice.org/2000/office" ...>

 ...
 <office:body>
 ...
 <text:ordered-list text:style-name="Numbering 1">
 <text:list-item>
 <text:h text:style-name="P2" text:level="1">...
 Introduction
 </text:h>
 </text:list-item>
 </text:ordered-list>
 <text:p text:style-name="Text body">
 <text:span text:style-name="T1">
XML and XSLT show great promise for bridging the gap between designers
and implementers. Design and build tasks can occur
simultaneously. Stylesheets can even be written by technically savvy
designers and used in the website without
reverse-engineering. However, tools are lacking. Back-end data is
usually not delivered as XML and front-end tools for creating and
testing XSLT style sheets are still in the prototype stages.
 </text:span>
 </text:p>
 <text:ordered-list text:style-name="Numbering 1"
 text:continue-numbering="true">
 <text:list-item>
 <text:h text:style-name="Heading 1" text:level="1">
 Conclusion and perspectives
 </text:h>
 </text:list-item>
 </text:ordered-list>
 <text:p text:style-name="Text body">
As a result of this analysis we can conclude that this solution is perfect.
 </text:p>
 </office:body>
</office:document-content>

Notice how headings are identified by a "text:h" element with a "text:style-name" attribute value of "Heading 1". We
can express this with an XPath expression over the "content.xml" member:

//text:h[@text:style-name = 'Numbering 1']/text()

But to actually get to this step the normal procedure would be to first unzip the archive and then run the XPath expression
on the "content.xml" member.

In this paper we will instead take the "virtual XML" approach and introduce two additional XPath functions in our
arsenal:

RenderX
5XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Phantom XML

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=80

• unzip(filename) returns an XML document where the zip file structure is represented in XML. Example 3, “Unzip
Virtual XML Extension” shows the result of using the unzip function on our sample zip archive (except that we
have formatted the XML and replaced the longer byte sequences with "...").

• parse(base64data) returns the XML content obtained by parsing the binary data as an XML file.

Example 3. Unzip Virtual XML Extension

<?xml version="1.0"?>
<zip>
 <entry name="mimetype" size="30" time="2005-09-258T20:50:12Z">
 <bytes>YXBwbGljYXRpb24vdm5kLnN1bi54bWwud3JpdGVy</bytes>
 </entry>
 <entry name="content.xml" size="7966" time="2005-09-258T20:50:12Z">
 <bytes>...</bytes>
 </entry>
 <entry name="styles.xml" size="14181" time="2005-09-258T20:50:12Z">
 <bytes>...</bytes>
 </entry>
 <entry name="meta.xml" size="1066" time="2005-09-258T20:50:12Z">
 <bytes>...</bytes>
 </entry>
 <entry name="settings.xml" size="8363" time="2005-09-258T20:50:12Z">
 <bytes>...</bytes>
 </entry>
 <entry name="META-INF/manifest.xml" size="752" time="2005-09-258T20:50:12Z">

 <bytes>...</bytes>
 </entry>
</zip>

Combining the two functions with the expression above means that the expression in Example 2, “OpenOffice Document
Content XML Structure” selects the top-level headings in the OpenOffice document: evaluating it returns the single
text value "Conclusion and perspectives" (assuming that the namespace prefixes have been properly set up).

Example 4. XPath to select OpenOffice top-level headings

parse(decode(
 unzip('example.sxw')/zip/entry[@name = "content.xml"]/bytes/text(),
 'UTF-8'))//text:h[@text:style-name = 'Numbering 1']/text()

The challenge of phantom XML is to evaluate the above expression without ever materializing the actual XML document.
Informally we can imagine doing it like this with lazy evaluation:

1. Evaluation starts by the XPath engine realizing that it needs to produce some output as the result of the whole
query is being printed. This invokes the parse function. The parse function immediately returns ready for XML
navigation of the (not yet) parsed byte stream parameter.

2. The XPath engine starts navigationg the XML document build by the parse function, searching for a "text:h"
element. This makes the parse function need to look at its argument byte sequence. This invokes the unzip function
which allows navigation to the "zip" element which can be done without actually reading the zip file (because it
is always present).

RenderX
6XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Phantom XML

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=80

3. Still out to produce bytes for the parse function, the XPath engine next searches for an "entry" child of the "zip"
element. This makes the unzip function actually open the zip file and visit the archive members. For each the
XPath engine requests the value of the "name" attribute until one with the value "content.xml" is found.

4. For the "content.xml" entry the XPath engine then requests the bytes element and immediately thereafter the text
contents. This returns a handle to the zip entry byte stream which then enables the parse function to start parsing
bytes.

5. The XPath engine now starts navigating the result of the parse function, with the parse function producing the
relevant XML nodes on the fly as it parses. Every time parsing has produced a "text:h" element then the XPath
engine attempts to navigate to the "text:style-name" attribute to check that its value is the text "Numbering 1".
When one is found the text() value is extracted and contributed to the resulting node sequence.

Below we shall explain how the above is achieved in practice.

1.4. Organization of the paper
This paper is organized as follows. In Section 2, “Lightweight Virtualization of the XML Data Model” we present the
adaptable and cursor-based data model implementation that represents our "phantom" XML virtualization, along with
a set of profiles corresponding to common data access patterns. In Section 3 we show how this can be combined with
an XPath analysis to allow adapting data source profiles to XPath requirements. In Section 4 we present some meas-
urements and in Section 5 we conclude.

2. Lightweight Virtualization of the XML Data Model
In this section we explain the data model and in particular how the iterator/cursor technique can be used to present a
lightweight XML data model interface.

We shall adhere to the following principles to make the focus model as light-weight as possible:

• A single data structure (or object) should suffice for all access into an XML document as well as any sequence of
nodes from a collection of XML documents.

• All access to the data model properties is through the focus: It is not possible to dereference the cursor and obtain
a reference to the "real" XML data underneath the focus.

We shall call this universal cursor the focus.

2.1. Focus operations
The operations of a focus are described in the following table. For each the corresponding data model [DM] concept
is listed, where applicable.

NotesData Model conceptExplanationOperation

dm:node-kindget node kind of current itemget-node-kind

dm:node-nameget name of element, attrib-
ute, or processing-instruction

get-node-name

1dm:string-value, dm:typed-
value

get simply typed value of
current item, if any

get-value

1dm:typed-valueget type of item (falls back
to kind)

get-type

RenderX
7XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Phantom XML

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=80

NotesData Model conceptExplanationOperation

1dm:typed-valueget type name of current
item, if any

get-type-name

dm:namespace-bindingsget list of declared
namespace prefixes (includ-
ing the empty default) with
namespace URIs

get-namespace-bindings

dm:base-uriget base URIget-base-uri

dm:is-idtest whether the current item
is an ID

is-id

dm:is-idreftest whether the current item
is an IDREF

is-idref

2get context sizeget-size

2get context positionget-position

2navigate to next item in con-
text sequence or fail

to-next

2navigate to previous item in
context sequence or fail

to-previous

2navigate to item with specific
position in context sequence
or fail

to-position

test whether two foci have
current nodes in the same
document

is-same-document

node identitytest whether two foci have
the same current node

is-same-node

document ordertest the document order of
the current node of two foci

is-document-order-compar-
able

2dm:attributesnavigate to attributes (re-
place the context sequence
with first attribute in docu-
ment order as current) or fail

to-attributes

2dm:childrennavigate to children (replace
the context sequence with
first child as current) or fail

to-children

dm:parentnavigate to the parent (with
no other nodes in the context
sequence) or fail

to-parent

3navigate to the root (with no
other nodes in the context
sequence) or fail

to-root

4duplicate (clone) the focusduplicate

4free the focusfree

5set the simply typed value of
current item

set-value

5add attribute to elementadd-attribute

RenderX
8XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Phantom XML

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=80

NotesData Model conceptExplanationOperation

5remove attribute from ele-
ment

remove-attribute

5add new first child node of
kind (text, element w/name,
comment, or processing-in-
struction w/target)

add-first-child-kind

5add new following sibling
node of kind (text, element
w/name, comment, or pro-
cessing-instruction w/target)

add-following-sibling-kind

5remove entire subtree rooted
at first child

remove-first-child-subtree

5remove entire subtree rooted
at following sibling

remove-following-siling-
subtree

Notes.

1. The data model accessor dm:typed-value and dm:string-value are simplified in the focus model:

• get-value only returns unchanged simply typed values: it always succeeds when the focus points to text nodes
but the result may be typed (if the text is contained in a simply typed element); in addition it always succeeds
for attribute nodes (with the typed result), comment, and processing-instruction nodes; finally for non-node
items in the top-level sequence it just returns the typed value.

• get-type just returns a type that would type-match the current item of the focus.

2. Context sequence navigation is not just used for the top-level context sequence, it is also used for the sequence
of attributes and children established by those navigation operations.

3. Navigation to the root is not part of the data model.

4. Duplicate is used to clone the focus into two identical but independent foci: navigation on either focus does not
affect the other. The two still reference the same underlying document, however, so mutation performed by one
will affect the document seen by the other. Each of the two clones should be free'd independently.

5. The update, or mutation operations, all operate near but not on the current node. They all operate on the XML
data model tree so we do not actually have a way to modify the top-level sequence.

As we shall see in the remainder of this section, many use patterns can be expressed in terms of pure subsets of these
operations. Two cases are so common and restrictive that they deserve special mention.

2.2. Streaming input
The most common pattern is to read an XML document in a single, left-to-right pass. This profile is ideal for applications
such as content-based routing or searching through large (or even infinte) streaming XML data feeds (for instance a
stock quote stream). This corresponds closely to the operations of XML "Pull Parser" APIS [XPP][StAX], indeed it
is trivial to write adapters for "real" XML using these very efficient parsers when restricting access to the streaming
input profile. (We shall discuss the details of how we classify concrete XPath expressions as streaming, or transform
XPaths into streaming form, in Section 3.)

For our operation set, the streaming input use pattern occurs when the sequence of operations conforms to this grammar
(with non-terminals in italics):

RenderX
9XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Phantom XML

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=80

Document ::= to-children Sibling free
Sibling ::= get-node-name? (get-value | Attributes Children)
Attributes ::= duplicate to-attributes (Attribute-traversal)? free
Attribute-traversal ::= (get-node-name? get-value? to-next)+
Children ::= duplicate to-children (Sibling-traversal)? free
Sibling-traversal ::= (Sibling to-next)+

with the additional constraints that

• At any time only the result of the last duplication not freed can be operated on, corresponding to a LIFO or duplicate
stack discipline.

• For each optional fragment "(...)?" the immediately preceding "to-" operation determines whether it is used: on
failure the optional fragment is skipped, otherwise it is included.

• For each repeated fragment "(...)+" the trailing to-next operation determines whether another repetition is unfolded:
on failure no further repetition, otherwise one more is attempted.

Indeed we can seperate this into two constraints: duplicate-stack-discipline, corresponding to the first constraint, and
streaming-siblings, corresponding to the grammar with only the second constraint.

Notice that we could not have used a single focus combined with using the to-parent operation because to-parent does
not recover the context sequence with the full list of children of the parent but rather effectively "forgets" the other
siblings, and we have no "to-following-sibling" navigation operation. In practice this is alright because the combination
of the constraints means that the "duplicate" and "free" operations match up cleanly so only one focus is active at any
time.

Another characteristic of the streaming input profile is because of its simplicity, it is very easy and very fast to implement
new adapters. These adapter can then be used in a streaming fashion by any applications built on top of virtual XML
without any specific requirements.

2.3. Streaming output
Conversely, streaming output corresponds to "push" streaming such as the events of [SAX] except that the streaming
output profile emits attributes one at the time rather than as a single event. The streaming output profile is useful for
serializers and similar "sink" applications that emit XML without rereading the emitted XML.

Streaming output can also be realized by restricting the sequence of allowed operations to occur only as specified by
a grammar:

Document ::= add-first-child-element Content free
Content ::= (add-attribute)* (First to-children (Following to-next)* to-parent)?
First ::= add-first-child-text

 | add-first-child-comment
 | add-first-child-processing-instruction
 | add-first-child-element Content

Following ::= add-following-sibling-text
 | add-following-sibling-comment
 | add-following-sibling-processing-instruction
 | add-following-sibling-element Content

RenderX
10XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Phantom XML

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=80

As an example, the result of the entire OpenOffice heading query of Example 4, “XPath to select OpenOffice top-level
headings” is meant to be copied to the serializer thus it only needs to implement the streaming profile.

RenderX
11XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Phantom XML

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=80

Example 5. Focus Copy Method

One simple application we can now write is a copy operation that copies a streaming input to a streaming output; here
in Java. Notice how this code directly translates the streaming input operations to streaming ouput operations without
using any storage. (For convenience the "first-child" and "following-sibling" variants are joined in the Java implement-

ation using a "where" parameter to distinguish between the operations.)

private static void copy(short where, Focus source, Focus target)
{
 switch (source.getKind())
 {
 case Focus.DOCUMENT_KIND :
 copyChildren(where, source, target);
 break;

 case Focus.ELEMENT_KIND : {
 target.addElement(where, source.getName());
 Focus attr = source.duplicate();
 if (attr.toAttributes(null)) {
 do {
 copy(where, attr, target);
 } while (attr.toNext());
 }
 attr.free();
 target.toChildren(null);
 copychildren(where, source, target);
 target.toParent();
 break;
 }

 case Focus.ATTRIBUTE_KIND :
 target.addAttribute(source.getName(), source.getValue());
 break;

 case Focus.TEXT_KIND :
 target.addText(where, source.getValue());
 break;

 case Focus.COMMENT_KIND :
 target.addComment(where, source.getValue());
 break;

 case Focus.PROCESSING_INSTRUCTION_KIND :
 target.addProcessingInstruction(where, source.getName(),
 source.getValue());
 break;
 }
}

private static void copyChildren(short where, Focus source, Focus target)
{
 source = source.duplicate();

RenderX
12XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Phantom XML

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=80

 if (source.toChildren()) {
 copy(Focus.WHERE_FIRST_CHILD, source, target);
 while (source.toNext())
 copy(Focus.WHERE_FOLLOWING_SIBLING, source, target);
 }
 source.free();
}

2.4. Forward only with skipping profile
The next profile up the "food chain" of profiles is for data where we allow arbitrary skipping of subtrees as we read
the document from left to right: this is a useful abstraction for parsed data with size information for the data fragments
corresponding to subtrees, or where children at each level are indexed such as, for example, when accessing file systems
(where skipping subtrees is cheap).

Both of the result of the unzip and parse functions from the OpenOffice headings XPath of Example 4, “XPath to select
OpenOffice top-level headings” can be evaluated with just the features duplicate, to-children, and to-next, to visit child
elements, as well as to-attributes, to visit and test the attributes. This fits within the forward-only profile but not the
streaming profile because the use of predicates means that the XPath engine skips the subtrees for which the predicate
was false.

2.5. Downward only profile
An interesting profile for XPath is the profile that disallows upward navigation, i.e., to-parent and to-root: with this
profile only states "saved" with duplicate enable referencing ancestor nodes.

The advantage of this profile is that only a "window" on the XML data is available at any time during processing. This
window is delimited by the first focus, the one nearer to the beginning of the tree than the other foci, and the last focus
which is ahead of the others foci. When the first focus moves forward, then all previous nodes can be discarded. When
the last focus moves forward then nodes are cached in order to be made available for the later foci.

When constrained by the duplicate stack discipline this profile operates in the same manner as the streaming input
profile: no nodes are cached which implies partial streaming processing (the only difference being that siblings can be
accessed in any order).

2.6. Full data model profile
Everything is allowed. This typically implies that the entire XML document needs to be stored in memory. The purpose
of this paper is to avoid the full data model profile whenever possible.

2.7. Fixing missing profile features
So what should one do when an application is provided with a source that just supports the streaming input yet needs
to do arbitrary navigation? We shall wrap the limited data source in a "fixer" focus that provides the missing features.

Here are some basic fixers:

1. Compare fixes the node comparison operations by ensuring that nodes are tagged with an id that can be used to
determine document order.

2. Size implements the context size.

3. Skip fix to allow arbitrary skipping.

RenderX
13XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Phantom XML

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=80

4. Cache fixes all read features.

The next level of set of features implies caching parts or the whole data model instance. In the XML world, the natural
structure to cache XML data is to use a DOM-like representation. However in order to avoid the eager materialization
of the entire XML data, a cache manager is associated to it in order to control the internal representation (figure?). For
instance, it can decide to materialize lazily only certain parts of the XML data, to skip other parts and even to discard
existing materialized XML data.

Three profiles are identified with different levels of caching. In the first subsection we describe the first profile which
allows only forward navigation. The second section extends the first profile with the subtree skipping capabilities. All
features are allowed in the full profile describe the the third section.

2.8. Profile and fixer summary
The table below summarizes some profiles (supported features marked "*", constrained features marked "-") and fixers
(that provide features marked "*" when the underlying profile supports features marked "o").

cacheskipsizecom-
pare

read-
write

stream-
ing-out

read-
only

downforwardstream-
ing

Allowed
opera-
tion

oooo*****duplic-
ate-
stack-
discip-
line

oooo*****stream-
ing-sib-
lings

*****get-size

--to-next

****to-previ-
ous

****to-posi-
tion

*****is-same-
docu-
ment

*****is-docu-
ment-or-
der-com-
parable

--to-attrib-
utes

--to-chil-
dren

**-*to-parent

***to-root

*****-duplic-
ate

RenderX
14XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Phantom XML

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=80

cacheskipsizecom-
pare

read-
write

stream-
ing-out

read-
only

downforwardstream-
ing

Allowed
opera-
tion

******-free

***stream-
ing-out-
put

*-set-value

*-add-at-
tribute

*remove-
attribute

*-add-ele-
ment

*-add-text

*-add-
comment

*-add-pro-
cessing-
instruc-
tion

*remove-
subtree

The "pseudo-operations" defined by special rules are italicized, in particular the "first-child" and "following-sibling"
variants have been combined and most of the "get-" operations have been omitted as they are always supported.

3. Optimizing XPath for Data Model Profiles
In the previous section we identify profiles requiring different levels of resources consumption. The basic streaming
input profile allows very few features, and therefore supports only a subset of XPath. On the other hand it does not
store any XML data in memory. At the other side of the spectrum, the full profile allows the processing of full XPath
but with the price of having potentially all XML data in memory. In this section we explore rewriting techniques that
change the category of an XPath, for instance from a forward only XPath to a basic XPath. By changing the category,
an XPath which wasn't scalable can now be processed over large XML data.

3.1. XPath processor overview
Each XPath expression is processed by first compiling it into an interpretable form or a directly executable form. It is
then interpreted or executed. We describe those two phases in the following sections.

3.1.1. Static phase

The compilation phase consists of several rewriting steps on the original XPath, in the following order:

• The first step is parsing the expression within the static context given by the hosting application (i.e. Java, XSLT,
etc...). The result of this first step is an AST representing the parsed expression in memory.

RenderX
15XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Phantom XML

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=80

• The second step consists of normalizing the initial expression into Core XQuery [FS]. Since the resulting "core
expression" can be large, it is sent over a stream of expression events instead of being fully built in-memory. It is
then reduced on-the-fly by various optimization processes, described below.

• The following steps perform on-the-fly reductions and optimizations. It includes the removal of dead code, unused
variables and removal of distinct-doc-order. After those steps, the core expression is fully represented in-memory
as an AST.

• Global analysis and optimizations are then performed such as function call analysis, specialization, etc... One par-
ticular analysis which is in special interest in this context is the feature set analysis. It determines which features
are needed to execute the XPath.

• The last step consists of compiling the optimized-reduced core expression into an interpretable form or directly
into an executable form (i.e compiled C code, Java bytecode, etc...)

Designing a full highly optimizing compiler is a tremedous task which requires a very sophisticated cost model for all
the components involved in the processing of XPath expression, from the system to the application. In order to limit
the scope of this paper, a very simple cost model is defined with the following assumptions:

• Accessing the data is relativelly costly since data is accessed through the virtualization layer.

• Input document can be very large, even infinite (i.e. events stream).

During the compilation phase, the expression is transformed in such a way that the number of accesses to the source
data and the number of intermedite buffers is minimized. The best case is when the data that is needed for processing
is only accessed once. The worst case is when the input data must be materialized fully. (Section 3.2, “Rewrite XPath
to constrain used features” described some of those transformations.)

Example 6, “doc('content.xml')//text:p[string(.) = 'XPath'] after compilation” shows an example result of compilation,
more specifically normalization and optimization. The features set analysis can determine that for this expression the
downward profile is required. Indeed, the variable fs:sequence bound to the expression descendant-
self::node() is referenced twice and therefore its value is potentially read twice. Therefore it needs to be cached
which in this case correspond to the entire input document. Later in the paper we will see how this expression can be
executed within the streaming profile only.

RenderX
16XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Phantom XML

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=80

Example 6. doc('content.xml')//text:p[string(.) = 'XPath'] after compilation

fs:distinct-doc-order(
 let $fs:sequence :=
 fn:doc(fs:convert-simple-operand(fn:data('content.xml'), ' '))
 return
 let $fs:last := fn:count($fs:sequence)
 return
 for $fs:dot in $fs:sequence return
 fs:distinct-doc-order(
 let $fs:sequence := descendant-self::node() return
 let $fs:last := fn:count($fs:sequence) return
 for $fs:dot in $fs:sequence return
 let $fs:sequence := fs:distinct-doc-order(child::p) return
 let $fs:last := fn:count($fs:sequence) return
 for $fs:dot at $fs:position in $fs:sequence return
 if (typeswitch(fs:eq(
 fs:convert-operand(fn:data(fn:string($fs:dot)),
 'string'),
 fs:convert-operand(fn:data('XPath'), 'string')))
 case $fs:v1 as fs:numeric return
 op:numeric-equal($fs:v1, $fs:position)
 default $fs:v1 return
 fn:boolean($fs:v1))
 then
 $fs:dot
 else ()
)
)

3.1.2. Runtime phase

The runtime phase follows strictly the steps described in [XPath2], Section 2.2.3.2 Dynamic Evaluation Phase. Our
XPath processor is pull-based with the following characteristics. First, it is lazy which means that the expression
computation expression is perfomed incrementally each time the application (the one requesting XPath evaluations)
asks for the next result, as discussed before. In particular the input document is parsed incrementally. The second
characteristic is that the profile of each source involved in the expression computation is checked and "fixed" if needed
(see Section 2.7, “Fixing missing profile features”). The fixing step depends on the features needed by both the host
application and the XPath engine. For example, for an XPath requiring only streaming profile, no fixing will be per-
formed. However if the application navigates through the XPath result downwards or upwards, then each source needs
to be fixed in order to allow it.

3.2. Rewrite XPath to constrain used features
In this section is described some rewriting techniques that decrease the number of features needed for evaluating an
XPath.

RenderX
17XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Phantom XML

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=80

3.2.1. Forward-only transformation

The forward-only transformation aims at converting arbitrary XPath expressions into an equivalent expressions using
only forward axes (child, descendant, etc...). (The details of this kind of transformation is well described in the
literature, see for example [Geneves], [Xaos], and [Olteanu]).

One characteristic of this transformation is to change the number of features required for running an XPath, eventually
transforming it into a pure streaming (only one cursor needed) XPath. For example, Consider the XPath expression
/descendant::employee/ancestor::manager[1] which enumerates all employee elements and then
collects for each the closest manager ancestor element. Example 7, “/descendant::employee/ancestor::manager[1] after
normalization and forward-only transformation” shows the result of normalization [FS] and the forward-only trans-
formation steps on the expression.

Example 7. /descendant::employee/ancestor::manager[1] after normalization and forward-only
transformation

ddo(
 let $managers := /descendant-or-self::manager
 return
 let $seq := /descendant::employee
 return
 for $dot in $seq
 return
 let $seq :=
 for $m in $managers
 return
 if $d/descendant-or-self::node() intersect $dot
 then $d else ()
 return
 let $last := count($seq)
 return
 for $dot in $seq
 return
 let $rpos := count(
 for $m in $managers
 return
 if $d/descendant-or-self::node() intersect $dot
 then $d else ()
)
 return
 let $pos := $last - $rpos + 1
 return
 if $pos eq 1 then $dot else ()
)

In this transformed expression, instead of using the ancestor axis, it searches all potential ancestors (by using the
descendant-or-self axis) and for each it tests that it has the context node as a descendant ($d/descendant-
or-self::node() intersect $dot). The bottom part of the expression (when the variable last is bound)
performs the position filtering.

RenderX
18XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Phantom XML

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=80

Notice that this expression is not purely streamable and that several intermediary buffers (represented as variables) are
used. In this case, only the manager elements which have a employee as an ancestor need to be stored which is
potentially much less than the entire document.

3.2.2. distinct-doc-order() function removal

During the process of normalization, document order and duplicate removal is explicitly performed by the formal se-
mantic function called distinct-doc-order. This function hurts the streamability of XPath expression in a very
bad way. Indeed, it required the storage of the expression result passed as a parameter of this function. Hopefully, in
some cases it is possible to determine statically whether this function is useful or not [Fernandez]. For example, let us
consider the expression $log/*/descendant::content-len. The expression obtained after the normalization
step is the following:

distinct-doc-order(
 for $fs:dot in distinct-doc-order(
 for $fs:dot in $log return child::*
)
 return descendant::content-len
)

Each step is evaluated with respect to an implicit context node, which is bound to the variable $fs:dot. The dis-
tinct-doc-order function sorts its input in document order and removes duplicates. However in this example
the result of the inner for loop is already in document order and contains no duplicates. That is a property of all axis,
in particular the child and the descendant axis. Therefore, the distinct-doc-order function can be removed,
resulting in the following expression:

for $fs:dot in
 for $fs:dot in $log return child::*
return
 descendant::content-len

This expression is now streamable and can be evaluated within the only-one cursor profile.

3.2.3. Schema-based rewriting

Whenever the schema of sources is known while compiling XPath expression, several schema-based optimizations
can be performed. It also help reducing the number of features required to run XPath expression. For example, consider
the operator |. In addition to constructing the union of two sequences, it eliminates duplicate nodes and it returns node
in document order, which requires at least storing the entire evaluation result before being executed. Consider the ex-
pression //(africa|europe)//@id which looks for all the id attribute within africa and europe. If the schema
associated with the input document specifies that africa and europe occur only once and that africa always
occurs before europe then the union operator can be transformed into an equivalent function, say simple-union(),
that does not perform duplicate elimination and reordering.

3.2.4. Synthesis

By applying the optimizations described in the section above, in addition of some others simple optimizations based
on type analysis, contextual analysis and cardinality analysis, the expression //text:p[string(.) = 'XPath']
is reduced as follows:

RenderX
19XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Phantom XML

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=80

 let $fs:sequence := fn:doc('content.xml')
 return
 for $fs:dot in $fs:sequence
 return
 for $fs:dot in descendant-self::node()
 return
 for $fs:dot in child::p
 return
 if (fs:eq(fn:string($fs:dot), 'XPath')
 then $fs:dot
 else ()

Compare to the normalized expression, this expression is much simpler and requires much fewer features to be executed.
In fact, this expression can be executed within the streaming profile as it contains only forward axis, each variable
declaration is referenced only once, and the functions involved are themselves streamable.

4. Experimentation and measurements
We have implemented a prototype based on the ideas presented in this paper [Virtual]. This prototype is written in
Java and covers most of the XPath 2.0 language. Several virtual XML adapters have also been implemented, including
the ones described in the paper, unzip and parse, plus a generic Data Format Description Language [DFDL] adapter,
a generic relational database adapter, as well as adapters for entire file systems.

The prototype has allowed us to performed some very preliminary measurements. Our main goal is to show that for
some expressions it uses a constant amount of memory and that in this context it is fast. The type of expressions we
have focused on so far are those that can be evaluated using the streaming input profile, like this one (inspired by Ex-
ample 4, “XPath to select OpenOffice top-level headings”):

v:parse(v:decode(
 v:unzip('examples.sxw')/zip/entry[@name eq 'content.xml']/bytes/text(),
 'UTF-8'))/*/body[1]/h[3]/text()

We have run this expression against different input sizes using our prototype and also [Xalan] 2.6.1. In order to run
this expression using Xalan, the two functions unzip and parse have been coded directly in Java and the input
stream associated to the file content.xml is given as the input of Xalan's XPath engine. The results are shown in
Figure 1, “Performance and scalability measurements”. The number of entries in the zip file remains constants through
the various tests, only the size of content.xml varies. On the left, the part of the document that is after the third
header varies in size, whereas and the right the part before varies in size.

RenderX
20XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Phantom XML

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=80

Figure 1. Performance and scalability measurements

In general, our prototype performs better than Xalan for two main reasons: our XPath engine reads input documents
lazily and for this specific expression it does not have to read the entire document before returning the third header.
The left curve corresponding to Phantom XML is flat and therefore illustrates this behavior. The second reason is the
input document is not materialized in memory since the expression can be evaluated within the streaming input profile.
Xalan, on the other hand, fully reads input documents and builds an in-memory representation of it.

5. Conclusions and perspectives
We have shown how the use of "XML data model profiles", with a subset of features of the full data model, can capture
data access patterns, and how a cursor model using such profiles is can exploit results of an analysis of data access
patterns exercised by XPaths queries to obtain a scalable XPath processor allowing the processing of large XML effi-
ciently by caching in memory only the nodes that are required for evaluating a given query. Moreover, we have shown
how XPath queries can be highly optimized using cutting-edge optimization techniques (such as distinct-doc-order
reduction) further improving performance and we have explained how direct (or "on-demand") adapters can create
virtual XML views on non-XML data without requiring any materialization of actual XML structures. This is what
we call "phantom" XML. Finally, we have outlined a comparison of the performance of a Phantom XML implement-
ation and a traditional one, giving an example where Phantom XML does not suffer the same scalability issues as the
traditional solution.

5.1. Next steps
Experiments ave started with the virtual and phantom XML notions using our released prototype [Virtual]. Especially
the combination of virtual XML adapters shows a lot of promise in streamlining the process of eliminating the data
conversion costs of the on-demand enterprise. Further adapters in development include adapters for the entire web and
multimedia files. All steps that will facilitate the adoption of XML and the XML processing languages without incurring
an unreasonable performance penalty.

5.2. Related Work
One particular case that has been studied extensively is streaming. Most streaming XPath processors support some
subset of Xpath suitable for streaming [STX][XmlReader] but recently some more full-featured variants have been
reported [Xaos][XSQ][BEA]. Common to these approaches is that they employ an automata approach where the XPath

RenderX
21XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Phantom XML

Re-format page sizes

http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=80

is translated into some kind of state machine that is then run over the "event stream" of the input. This is very fast for
some XPaths but can lead to exponential blow-up of the state space, for example when finding identically named pairs
of nodes throughout a document; partial caching can improve on this and indeed hybrid engines use this [Virtual][BEA].
One engine goes further and define explicit event processing extensions to XQuery [FluXQuery]. It is even possible
to use clever data structures for automatic caching [ViteX].

Bibliography
[BEA] Daniela Florescu, Chris Hillery, Donald Kossmann, Paul Lucas, Fabio Riccardi, Till Westmann, J. Carey, and
Arvind Sundararajan The BEA streaming XQuery processor. The VLDB Journal - The International Journal on Very
Large Data Bases, 13, 3, September 2004.

[BPEL] Tony Andrews, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Johannes Klein, Frank Leymann, Kevin
Liu, Dieter Roller, Doug Smith, SatishThatte, Ivana Trickovic, and Sanjiva Weerawarana Business Process Execution
Language for Web Services version 1.1. OASIS, May 2003. http://www-128.ibm.com/developerworks/library/specific-
ation/ws-bpel/.

[Geneves] Pierre Genevès and Kristoffer Rose Compiling XPath into a State-less Forward-only Subset First Interna-
tional Workshop on High Performance XML Processing. May 2004. http://wam.inrialpes.fr/www-workshop2004/Pro-
gram.html.

[DFDL] MikeBeckerle. Data Format Description Language (DFDL). Global Grid Forum Data Format Description
Working Group draft, September 2005. https://forge.gridforum.org/projects/dfdl-wg/.

[DM] MaryFernandez, AshokMalhotra, JonathanMarsh, MartonNagy, and NormanWalsh XQuery 1.0 and XPath 2.0
Data Model. World Wide Web Consortium Candidate Recommendation, November 2005. http://www.w3.org/TR/xpath-
datamodel

[Fernandez] Mary Fernandez, Jan Hidders, Philippe Michiels, Jerome Simeon, and Roel VercammenFernandez et al
Optimizing Sorting and Duplicate Elimination in XQuery Path Expressions 16th International Conference on Database
and Expert Systems Applications Copenhagen, Denmark, August 2005.

[FluXQuery] Christoph Koch, Stefanie Scherzinger, Nicole Schweikardt, and Bernhard Stegmaier Schema-based
Scheduling of Event Processors and Buffer Minimization for Queries on Structured Data Streams. International Con-
ference on Very Large Data Bases (VLDB), Toronto, Canada, 228-239, September 2004.

[FS] DeniseDraper, PeterFankhauser, MaryFernandez, AshokMalhotra, KristofferRose, MichaelRys, JeromeSimeon,
and PhilipWadler XQuery 1.0 and XPath 2.0 Formal Semantics. World Wide Web Consortium Candidate Recommend-
ation, September 2005. http://www.w3.org/TR/xquery-semantics

[Olteanu] Dan Olteanu, Holger Meuss, Tim Furche, and François Bry XPath: Looking Forward. Proceedings of
Workshop on XML-Based Data Management (XMLDM) at EDBT 2002, Prague, March 2002.

[OOo] OpenOffice.org. http://www.openoffice.org/

[SAX] Simple API for XML. http://www.saxproject.org/

[SDO] John Beatty, Stephen Brodsky, Micahel Carey, Raymond Ellersick, Martin Nally, and Radu Preotiuc-Pietro
Service Data Objects, Version 2.0. IBM and BEA, June 2005. Available (with Java interfaces) from http://www-
128.ibm.com/developerworks/library/specification/j-commonj-sdowmt/.

[SEQUEL2] Don Chamberlin et.al. SEQUEL 2: A Unified Approach to Data Definition, Manipulation, and Control.
IBM Journal of R&D, 20(6), November 1976, 560.

RenderX
22XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Phantom XML

Re-format page sizes

http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
http://www-128.ibm.com/developerworks/library/specification/ws-bpel/
http://wam.inrialpes.fr/www-workshop2004/Program.html
http://wam.inrialpes.fr/www-workshop2004/Program.html
https://forge.gridforum.org/projects/dfdl-wg/
http://www.w3.org/TR/xpath-datamodel
http://www.w3.org/TR/xpath-datamodel
http://www.w3.org/TR/xquery-semantics
http://www.openoffice.org/
http://www.saxproject.org/
http://www-128.ibm.com/developerworks/library/specification/j-commonj-sdowmt/
http://www-128.ibm.com/developerworks/library/specification/j-commonj-sdowmt/
http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=80

[SQLX] SQL/XML (ISO/IEC 9075-14:2005(E): Information technology - Database languages - SQL - Part 14: XML-
Related Specifications). ISO/IEC JTC 1/SC 32/WG 3. http://www.sqlx.org/SQL-XML-documents/5FCD-14-XML-
2004-07.pdf

[StAX] Streaming API for XML. Java Community Process JSR-173, December, 2003. http://www.jcp.org/aboutJava/com-
munityprocess/final/jsr173/

[STX] Oliver Becker, Paul Brown, and Petr Cimprich An Introduction to Streaming Transformations for XML.
XML.com, February 2003. http://stx.sourceforge.net/

[Virtual] Kristoffer Rose, Lionel Villard, Achille Fokoue, Rajeshwari Rajendra, Paul Castro, Christopher Holtz, Wil-
liam Li, and Stefan Schmidt Virtual XML "Garden", IBM alphaWorks, November 2005. http://www.al-
phaworks.ibm.com/tech/virtualxml

[ViteX] Yi Chen, Susan B. Davidson, and Yifeng Zheng ViteX: a Streaming XPath Processing System, International
Conference on Data Engineering (ICDE), Tokyo, Japan April 2005. http://csdl.computer.org/comp/proceed-
ings/icde/2005/2285/00/22851118.pdf

[WSDL] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana Web Services Description
Language (WSDL) 1.1. World Wide Web Consortium Recommendation, March 2004. http://www.w3.org/TR/wsdl

[Xalan] Xalan. Apache Software Fundation February, 2004. http://xml.apache.org/xalan-j/

[Xaos] Charles Barton, Philippe Charles, Deepak Goyal, Mukund Raghavachari, Vanja Josifovski, and Marcus Fontoura
Streaming XPath Processing with Forward and Backward Axes. ICDE - International Conference on Data Engineering,
Bangalore, India, March, 2003. http://www.research.ibm.com/xaos/applications.html

[XML] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, Francois Yergeau, and John Cowan Extensible
Markup Language (XML) 1.1. World Wide Web Consortium Recommendation, February 2004. ht-
tp://www.w3.org/TR/xml11

[XmlReader] Dare Obasanjo and Howard Hao The Best of Both Worlds: Combining XPath with the XmlReader. MSDN,
May 2004. http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnexxml/html/xml05192004.asp

[XPath] JamesClark and SteveDeRose XML Path Language (XPath) Version 1.0. World Wide Web Consortium Re-
commendation, November 1999. http://www.w3.org/TR/xpath

[XPath2] Anders Berglund, Scott Boag, Don Chamberlin, Mary Fernandez, Michael Kay, Jonathan Robie, and Jerome
Simeon XML Path Language (XPath) 2.0. World Wide Web Consortium Candidate Recommendation, November
2005. http://www.w3.org/TR/xpath20

[XPP] Aleksander Slominski, XML Pull Parser (XPP). http://www.extreme.indiana.edu/xgws/xsoap/xpp/

[XQuery] Scott Boag, Don Chamberlin, Mary Fernandez, Daniela Florescu, Jonathan Robie, and Jerome Simeon
XQuery 1.0: An XML Query Language. World Wide Web Consortium Candidate Recommendation, November 2005.
http://www.w3.org/TR/xquery

[XS] David Fallside and Priscilla Walmsley XML Schema Part 0: Primer Second Edition. World Wide Web Consortium
Recommendation, November 2004. http://www.w3.org/TR/xmlschema-0/

[XSQ] Feng Peng and Sudarshan Chawathe XPath Queries on Streaming Data. ACM SIGMOD International Conference
on Management of Data, San Diego, California, June 2003. http://www.cs.umd.edu/projects/xsq/

[XSLT] JamesClark. XSLT Transformations (XSLT) Version 1.0. World Wide Web Consortium Recommendation,
November 1999. http://www.w3.org/TR/xslt

RenderX
23XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Phantom XML

Re-format page sizes

http://www.sqlx.org/SQL-XML-documents/5FCD-14-XML-2004-07.pdf
http://www.sqlx.org/SQL-XML-documents/5FCD-14-XML-2004-07.pdf
http://www.jcp.org/aboutJava/communityprocess/final/jsr173/
http://www.jcp.org/aboutJava/communityprocess/final/jsr173/
http://stx.sourceforge.net/
http://www.alphaworks.ibm.com/tech/virtualxml
http://www.alphaworks.ibm.com/tech/virtualxml
http://csdl.computer.org/comp/proceedings/icde/2005/2285/00/22851118.pdf
http://csdl.computer.org/comp/proceedings/icde/2005/2285/00/22851118.pdf
http://www.w3.org/TR/wsdl
http://xml.apache.org/xalan-j/
http://www.research.ibm.com/xaos/applications.html
http://www.w3.org/TR/xml11
http://www.w3.org/TR/xml11
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnexxml/html/xml05192004.asp
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath20
http://www.extreme.indiana.edu/xgws/xsoap/xpp/
http://www.w3.org/TR/xquery
http://www.w3.org/TR/xmlschema-0/
http://www.cs.umd.edu/projects/xsq/
http://www.w3.org/TR/xslt
http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=80

[XSLT2] MichaelKay. XSLT Transformations (XSLT) Version 2.0. World Wide Web Consortium Candidate Recom-
mendation, November 2005. http://www.w3.org/TR/xslt20

[Zip] Info-ZIP. http://www.info-zip.org/

RenderX
24XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Phantom XML

Re-format page sizes

http://www.w3.org/TR/xslt20
http://www.info-zip.org/
http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=80

Biography
Kristoffer Rose

Research Staff Member
IBM Corporation [http://www.ibm.com]
T. J. Watson Research Center [http://www.research.ibm.com/]
Yorktown Heights
New York
United States of America
krisrose@us.ibm.com

Kristoffer Rose is a research staff member at the IBM Thomas J. Watson Research Center. He got his Ph.D. in
computer science from the University of Copenhagen in 1996 doing research in tree and graph rewriting systems.
After four years in academia, last as an associate professor at Ecole Normale Superieur in Lyon, France, he joined
IBM in 2000, where he conducts researches into the theory and practice of XML processing.

Lionel Villard
Advisory Software Engineer
IBM Corporation [http://www.ibm.com]
T. J. Watson Research Center [http://www.research.ibm.com/]
Yorktown Heights
New York
United States of America
villard@us.ibm.com

Lionel Villard is an advisory research engineer at the IBM T. J. Watson Research Center. He received his Ph.D.
at the Institut National Polytechnique de Grenoble (INPG) in March 2002. Dr. Villard's research interests include
multimedia documents, contextual adaptation, authoring tools, document transformations, incremental transform-
ations, and high performance.

RenderX
25XML 2005 Conference proceeding by RenderX - author of XML to PDF (XSL FO) formatter.

XSL• FO
formatter

Phantom XML

Re-format page sizes

http://www.ibm.com
http://www.research.ibm.com/
http://www.ibm.com
http://www.research.ibm.com/
http://www.google.com/search?q=http://www.renderx.com&btnI=I%27m+Feeling+Lucky
http://2005.xmlconference.org/
http://www.renderx.com
http://www.w3.org/Style/XSL
http://www.renderx.com/tools/xep.html
http://www.google.com/search?q=http://www.w3.org/Style/XSL&btnI=I%27m+Feeling+Lucky
http://www.google.com/search?q=http://www.renderx.com/tools/xep.html&btnI=I%27m+Feeling+Lucky
http://www.renderx.com/demos/xmlconf.html?dir=80

	1. Introduction
	1.1. Background
	1.2. Idea
	1.3. Our approach in an example
	1.4. Organization of the paper

	2. Lightweight Virtualization of the XML Data Model
	2.1. Focus operations
	2.2. Streaming input
	2.3. Streaming output
	2.4. Forward only with skipping profile
	2.5. Downward only profile
	2.6. Full data model profile
	2.7. Fixing missing profile features
	2.8. Profile and fixer summary

	3. Optimizing XPath for Data Model Profiles
	3.1. XPath processor overview
	3.1.1. Static phase
	3.1.2. Runtime phase

	3.2. Rewrite XPath to constrain used features
	3.2.1. Forward-only transformation
	3.2.2. distinct-doc-order() function removal
	3.2.3. Schema-based rewriting
	3.2.4. Synthesis

	4. Experimentation and measurements
	5. Conclusions and perspectives
	5.1. Next steps
	5.2. Related Work

	Bibliography

