Integration XEP with Oracle XDB

11. Preface

12. Using XEP as external XSLT-processor

22.1 Installation of the XEP

32.2 Rendering output documents and serialization

32.3 Data embedding by XDK

42.4 Data embedding by custom tool

54. Demo project

65. Documentation

65. Appendices A

1. Preface

This article explains customization process of embedding data and rendering to PDF output reports based on templates. The article uses web-demo project for illustration described technology. To embed data into reports it uses seamless integration of standard and custom components. To render high quality PDF reports uses the RenderX’s XSLT-processor XEP. The next generation of the RenderX’s XSLT-engine named DiType can be used also without any modifications of application code.

Oracle XDB (or XML Developers Kit – XDK) technology is specialized API supports some standard operations with XML-documents like parsing, XSL transformation and a lot of special operations like embedding data from query results into XML documents, rendering of the documents to output format (serialization). The last facility implemented for thin client as a Java Servlet. Using Java Servlet technology can able design web-client projects with using XSQL Pages Publishing Framework.
The Oracle’s solutions mostly is open therefore it’s possible to integrate 3rd party components produced ISV within Oracle technology to combine Oracle’s safety and scalability with special features which customized the technology. Apart from the fact that Oracle XDB has itself own XSLT-processor implementation it could be used external XSLT-processor implementation. A standard example of external XSLT-processor described in the XDB documentation is using the open source FOP to render (serialize) XML document to PDF output format.

2. Using XEP as external XSLT-processor

For using the XEP as alternative external rendering engine it has to use Java serialization class which invokes the XEP. The parts of the XEP have to place relative web-project’s folder accordingly. Bellow explanations takes system-software into consideration: the Tomcat 5.5.x web-server, XEP 4.7, Java 1.5.x., Oracle 9.2.0. The project has been testing under Windows 2003 Server R2, Red Hat Linux, SuSE Linux platforms.

Bellow paragraphs explain more detailed the process of design web-project for generation reports based on XDK-XEP integration.

2.1 Installation of the XEP

The rendering core XEP is delivered as setup for installing on user’s computer. After you install the XEP by this standard procedure you should reorganize its components to use in web-project environment as described below.

For using the XEP as part of a web-project it has to consider that XEP is licensed product and for its working it’s needed file license.xml with license data referenced by configuration file xep.xml. It’s also needed for XEP’s core implemented as library xep.jar has access to folders with fonts’ metrics, hyphens, images and other data. From other side the web-project’s program code has to access to the XEP’s core classes into xep.jar. The Tomcat web-server has some security restrictions to access to resources. Taking factors above into consideration suggest using the project’s folders structure like show bellow:

[image: image1.jpg]Address |) C:ljakarta-tomeat-5.5.5\webapps'mirg\WEB-TNFib

Folders

1 (D jakarta-tomeat-5.5.9

Dtbin

12 common

2 conf

1 logs

12 server

1 shared

D temp.

=1 (2 webapps.

1 balancer

1 fsp-examples

& root

1) serviets-examples

13 tomeat-docs

12 webdav

E 2 xmirg

= (2 WEB-INF
1) classes.
om
H D xep

12 fots
12 hyphen
() images

] crimson.for

5 soxenir
8 ep.or
By

The project includes the XEP’s libraries into folder WEB-INF/lib from correspondingly XEP’s installation folder. In the separate folder xep in the project’s root placed all needed parts of the XEP taking accordingly from its installation root and subfolders.

2.2 Rendering output documents and serialization

Communication with remote thin client and its requests processing produce by using Java Servlet technology. The XDK API includes a XSQL Pages Publishing Framework which implements top-level interface of interconnection between thin client and Oracle XDK. The exactly description of the Framework wrote in the documentation 1:

«The Oracle XSQL Pages publishing framework is an extensible platform for easily

publishing XML information in any format you desire. It greatly simplifies

combining the power of SQL, XML, and XSLT to publish dynamic web content

based on database information.»
The XSQL allows customizing process of generation the response’s pages by implements interface XSQLDocumentSerializer. The interface includes only one method serialize() with signature bellow:
public void serialize(Document document, XSQLPageRequest request);

The method gets as parameters source XML-document and the server context and has to render output document and serialize it into output stream. Implementation of the serialize() method by using XEP should include next steps described bellow fragment of code:

Properties options = new Properties();

options.setProperty("CONFIG", env.getParameter("xepCfg"));

formatter = new FormatterImpl(options);

OutputStream out = env.getOutputStream();

FOTarget target = new FOTarget(out, "PDF");

Element root = doc.getDocumentElement();

DOMSource domsrc = new DOMSource(root);

formatter.render(domsrc, target);
The complete source and binary of the demo example you can download from link in the Appendices A.

2.3 Data embedding by XDK
The XSQL uses meta-data descriptions during page generation process for indication points of the XML-document where data has to embed. For embedding the repetition content like a table’s rows the XDK needs using XSLT commands (<xsl:for-each>). To standardize form of the embedded data the XSQL uses XSU utility. Queries that used to read embedded data might read data from ordinary relational table as atomic field or from XML DB repository as whole XML fragments. But anyway the embedded data converts into canonical XML-document like this:
<?xml version = '1.0'?>

<ROWSET>

<ROW num="1">

<parent_name>Bill</parent_name>

<child_name>Child 1 of 2</child_name>

<child_name>Child 2 of 2</child_name>

</ROW>

<ROW num="2">

<parent_name>Larry</parent_name>

<child_name>Only one child</child_name>

</ROW>

</ROWSET>
Here the tag ROWSET includes the data of a whole table; the ROW includes data of a whole record and children elements of the ROW tag include data fields.
To indicate points where data will be embedding the XSQL uses mechanism similar XSL XPath expressions. Embedded data addressed in select attributes of t XSL-FO tags of the processed XSL-FO document. This describes in example bellow that produces XSL-FO table with embedded data from previous dataset:
<xsl:for-each select="ROWSET/ROW">

 <fo:table-row line-height="12pt">

 <fo:table-cell>

 <fo:block><xsl:value-of select="parent_name"/></fo:block>

 </fo:table-cell>

 <fo:table-cell>

 <fo:block><xsl:value-of select="child_name"/></fo:block>

 </fo:table-cell>

 </fo:table-row>

 </xsl:for-each>

This embedding model is simple and intuitive clear and allows embedding data with simple structure to produce small documents. When size and complexity of documents increase the expenses to support the system based on these principles increase dramatically because it’s needed a lot of low-level SQL- and XML-programming. When complex business-logic implements on server-side and especially on RDBMS it causes the same problems that are permanently for 2-tier client-server systems: it’s too hard for modifications and support.
To produce XSQL data-grams with simple structure it’s possible to use XML-data from query and custom tool XEdit to embed the XML-data.
2.4 Data embedding by custom tool
It’s not enough using standard XDK mechanisms to embed data with complex structure and relations between data, support server-side independent business-logic like calculated fields, subtotals, filtering data by user request, formatting customization of the data, etc. The XDK is flexibility and open standard that allows to customize process of embedding data into resulting report for adding special business-logic features in server-side independent manner.
To implements a lot of business-logic features during data embedding process supposed to use the XEdit API. It allows avoiding the main problems occurred when trying to scale the XDK technology from demo examples to enterprise solution. This solution should to allow:
1. Automates the process of designing and modifying the XSL-FO templates of the generated reports;
2. Uses declarative paradigm for designing a template (avoids style sheet coding);

3. Supports calculated fields, subtotals, filtering during data embedding;

For resolve these problems suppose to use 3rd tier client-server architecture. As 3rd tier middleware uses the XEdit API which interacts with Oracle XDB and renders final documents by XEP.
First task is generating XSL-FO templates with data embedding capabilities to produce final reports. The solution is the XEdit GUI tool based on MS Word and using smart-tags for embedding data into template on declarative way without writing any style sheet. After saving a designed template as XSL-FO it can be used with XEdit API as 3rd tier for data embedding.

The smart-tags for data embedding allow:

1. Embed data from any XML-documents using XPath expressions;

2. Using smart-tag to declare repetition content (e.g. for embedding table’s rows);

3. Using detailed tables, subtotals, calculated fields, filter conditions etc;

4. Seamless embed SVG, images etc. to render special objects like barcodes, charts;

Fragment of the document serializer class implements this integration is:

// embedded objects

NodeList embedList = root.getElementsByTagName("Embed");

// xeditAPI invoke

FO2FO api = new FO2FO(xmls, fos);

if (embedList != null)

api.convert(embedList);

else

api.convert();

// transform to PDF

api.transformByXEP(env.getParameter("xepCfg"), "PDF", out);
The complete source and binary of the demo example you can download from link in the Appendices A.

4. Demo project
The demo project is accessed at address http://www.renderx.com/demos/oracle_demo.html
To set up the project on your own environment you need following preinstalled software:
1. Oracle 9i Server;

2. Oracle XDK Tool;

3. Java 1.5;

4. Apache Tomcat 5.x.x web-server;

5. XEP-engine;

The first task is creating web-project under Tomcat. You can use web.xml file like this:

<?xml version="1.0" encoding="windows-1251"?>

<!DOCTYPE web-app

 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <display-name>Oracle Demo</display-name>

 <description>

 Integrating XEP-Oracle XDK demo project.

 </description>

<servlet>

 <servlet-name>view_xep</servlet-name>

 <servlet-class>oracle.xml.xsql.XSQLServlet</servlet-class>

</servlet>

<servlet-mapping>

 <servlet-name>view_xep</servlet-name>

 <url-pattern>*.xsql</url-pattern>

</servlet-mapping>

</web-app>

After you web-project is created you should set up the XEP rendering core properly in the Tomcat webapps/project folder as described in chapter 2.1. Installation of the XEP.
The next deal is set up Oracle’s XDK tool to communicate with Oracle DB properly. The XSQL servlets using connection to DB in any way even you don’t use DB for data storing. By the way you should add to the XDK configuration file that located in XDK_HOME/ xdk/admin/ XSQLConfig.xml the connection element into section <connectiondefs> like this:

 <connection name="orademo3">

 <username>orademo3</username>

 <password>passwd</password>

 <dburl>jdbc:oracle:thin:@oracle_server:1521:ora</dburl>

 <driver>oracle.jdbc.driver.OracleDriver</driver>

 <autocommit>true</autocommit>

 </connection>

The connection uses Oracle schema named ‘orademo3’ that should be created on you Oracle instance.

At this moment you can try using XSQL servlet to verify your project’s functionality. For example, you can use this simple helloworld.xsql placed into your web-project folder to produce reply from Oracle XDK:

<?xml version="1.0"?>

<xsql:query connection="demo3" xmlns:xsql="urn:oracle-xsql">

 SELECT 'Hello World, it''s me' AS greeting FROM DUAL

</xsql:query>

<!--

| $Author: kkarun $

| $Date: 20-apr-00.23:50:36 $

| $Source: /vobs/oracore3/demo/xdk/java/xsql/demo/helloworld/helloworld.xsql.mkelem $

| $Revision: /main/0 $

+-->
The address in your browser has been like http://localhost/OraDemo3/helloworld.xsql with appropriate address and project’s folder name. You would see the XSQL-datagram result in your browser:

<!--

| $Author: kkarun $

| $Date: 20-apr-00.23:50:36 $

| $Source: /vobs/oracore3/demo/xdk/java/xsql/demo/helloworld/helloworld.xsql.mkelem $

| $Revision: /main/0 $

+

-->

−<ROWSET>

−<ROW num="1">

<GREETING>Hello World, it's me</GREETING>

</ROW>

</ROWSET>

If you can’t see replying datagram therefore you should check XDK and Oracle Server parameters (schema name, IP-address, SID-name, etc.).

Now you can creating you own XSQL servlets to access data from Oracle DB and provide it in different output formats (HTML, XHTML, XML, etc.). The example of a real servlet to produce Purchase Orders list is here:

?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="stylesheets/po_list.xsl"?>

<data connection="orademo3" xmlns:xsql="urn:oracle-xsql">

<xsql:include-request-params/>

<xsql:query>

select count(*) orders_count from POX

</xsql:query>

 <xsql:query skip-rows="{@start_row}" max-rows="{@count_rows}">

SELECT

 o.num no,

 o.x.extract('/PO/PO_information/information/@DateOfIssue').getStringVal() issueDate,

 o.x.extract('/PO/Vendors/Vendor/@Name').getStringVal() vendor,

 TO_CHAR(o.x.extract('/PO/Vendors/Vendor/@TotalAmount').getNumberVal(), '$999,999.99') total

FROM (select num, x from POX order by num) o

 </xsql:query>

</data>
To produce embedding data into you XSL-FO data you would use different ways as described above in chapters 2.3 Data embedding by XDK, 2.4 Data embedding by custom tool or by your own custom tools. In any case you should use attribute ‘serializer’ in the XSQL which points to the XDK configuration file’s section <serializerdefs> :
 <serializer>

 <name>XEP</name>

 <class>XSQLXEPSerializer</class>

 </serializer>

Java class for rendering reports by XEP can be downloaded from demo-project’s site (see link below in the paragraph 5 Documentation). Java class for embedding data by XEdit API can be also downloaded but its needed licensed XEdit API library. Please see Java-doc for more information about these serializer-classes.
5. Documentation

1. Oracle9i XML Developer’s Kits Guide – XDK Part No. A96621-01
2. Oracle9i XML API Reference - XDK and Oracle XML DB Part No. A96616-01

3. XEdit API Javadoc
4. XSQLXEPSerializer.java

5. XSQLXEditSerializer.java

5. Appendices A

Example of the web-project.
